


Lecture Notes in Computer Science 5030
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Hong Mei (Ed.)

High Confidence
Software Reuse
in Large Systems

10th International Conference on Software Reuse, ICSR 2008
Beijing, China, May 25-29, 2008
Proceedings

13



Volume Editor

Hong Mei
Peking University
Institute of Software
School of Electronics Engineering and Computer Science
Beijing 100871, China
E-mail: meih@pku.edu.cn

Library of Congress Control Number: 2008926386

CR Subject Classification (1998): D.2, K.6, D.1, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-68062-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68062-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12270422 06/3180 5 4 3 2 1 0



  

Preface 

Software reuse depicts a great vision for the software industry. It has been widely 
viewed as a promising way to improve both the productivity and quality of software 
development. However, despite of the successes we have achieved, there are still 
many issues that have limited the promotion of software reuse in the real world. 
Therefore, software reuse has remained an important hotspot of research. ICSR is the 
premier international conference in the field of software reuse. It has been an 
important venue for presenting advances and improvements within the software  
reuse domain, and a powerful driving force in promoting the interaction between 
researchers and practitioners.  

The theme of ICSR 10 was "High Confidence Software Reuse in Large Systems." 
A high confidence system is one that behaves in a well-understood and predictable 
fashion. Today’s trends towards widespread use of commercial off-the-shelf (COTS) 
technology, increased integration, continuous evolution, and larger scale are yielding 
more complex software systems. So, the problem of how to build high confidence 
complex systems and how to reuse software with a high level of confidence has 
become a new attractive topic for research. Furthermore, high-level software asset 
reuse has been a goal for the last 20–30 years, and it can still be considered an 
unsolved question. Components-based development, MDA-MDE-MDD, extreme 
programming, and other techniques or methods are promising approaches to software 
reuse that still need more research. 

These proceedings report on the current state of the art in software reuse. The 
topics covered in the proceedings include software architecture, software components, 
high confidence technology, domain engineering, product line approaches, service-
oriented engineering, model-based approaches and several other aspects of software 
reuse. 

 
 

May 2008                                                                                                          Hong Mei 
 



Organization 

Organizing Committee 

General Chair 
 
Program Chair 
Workshops Chair 
 
Tutorial Chair 
 
Doctoral Symposium Chair 
Tools Demo Chair 
Local Arrangements Chair 
Publicity Co-chairs 
 
Finance Chair 
 
Web Chair 

Juan Llorens, University Carlos III of Madrid, 
Spain 

Hong Mei, Peking University, China 
Jianjun Zhao, Shanghai Jiao Tong University, 

China  
Jeff Poulin, Lockheed Martin Systems  

Integration-Owego, USA  
Gregory Kulczycki, Virginia Tech, USA 
Jose Luis Barros, Unversidad de Vigo, Spain 
Bing Xie, Peking University, China 
Bill Frakes, Virginia Tech, USA 
Ge Li, Peking University, China 
Chuck Lillie, ISASE, USA 
Wei Zhang, Peking University, China 
Donggang Cao, Peking University, China 

Program Committee 

Sidney Bailin 
Jose Luis Barros 
Ted Biggerstaff 
Sholom Cohen 
Reidar Conradi 
 
Hakan Erdogmus 
John Favaro 
Robert Feldt 
Bill Frakes 
Cristina Gacek 
Gonzalo Genova 
Birgit Geppert 
Hassan Gomaa 
Yanxiang He 
Zhi Jin 
 
Merijn de Jonge 
Kyo Kang, Postech 
Gregory Kulczycki 

Knowledge Evolution, USA 
Unversidad de Vigo, Spain 
SoftwareGenerators.com, USA 
Software Engineering Institute, USA 
Norwegian University of Science and Technology, 

Norway 
NRC Institute for Information Technology, Canada 
Consulenza Informatica, Italy 
Blekinge Institute of Technology, Sweden  
Virginia Tech, USA 
University of Newcastle upon Tyne, UK 
Universidad Carlos III Madrid, Spain 
Avaya Labs, USA 
George Mason University, USA 
Wuhan University, China 
Institute of Mathematics Chinese Academy of 

Sciences, China 
Philips, Netherlands 
Korea 
Virginia Tech, USA 



 Organization 

 

VIII 

Patricia Lago 
Filippo Lanubile 
Xuandong Li 
Chuck Lillie 
Chao Liu 
Juan Llorens 
Mike Mannion 
Masao Matsumoto 
Hong Mei 
Ali Mili 
Maurizio Morisio 
Markku Oivo 
Rob van Ommering 
Witold Pedrycz 
Jeff Poulin 
 
Wolfgang Pree 
Ruben Prieto-Diaz 
Klaus Schmid 
Alberto Sillitti 
Ioannis Stamelos 
Claudia Werner 
Jianjun Zhao 
Wenyun Zhao 

Vrije Universiteit Amsterdam, Netherlands 
Universitàdi Bari, Italy 
Nanjing University, China 
ISASE, USA 
Beihang Universtiy, China 
Universidad Carlos III Madrid, Spain 
Glasgow Caledonian University, UK 
Kyushu Sangyo University, Japan 
Peking University, China 
New Jersey Institute of Technology, USA 
Polytechnic of Turin, Italy 
University of Oulu, Finland 
Philips Research Laboratory, Netherlands 
University of Alberta, Canada 
Lockheed Martin Systems Integration- Owego, 

USA 
University of Salzburg, Austria 
James Madison University, USA 
University of Hildesheim, Germany 
Free University of Bolzano/Bozen, Italy 
Aristotle University of Thessaloniki, Greece 
University of Rio de Janeiro, Brazil 
Shanghai Jiao Tong University, China 
Fudan University, China 

Sponsors 

Corporate Technology, Siemens Ltd., China. 



Table of Contents

Architecture and Reuse Approaches

Introducing Architecture-Centric Reuse into a Small Development
Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Hans-Jörg Beyer, Dirk Hein, Clemens Schitter, Jens Knodel,
Dirk Muthig, and Matthias Naab

An Architectural Style for Data-Driven Systems . . . . . . . . . . . . . . . . . . . . . 14
Reza Mahjourian

Architectural Analysis Approaches: A Component-Based System
Development Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Novia Admodisastro and Gerald Kotonya

High Confidence and Reuse

Component-Based Abstraction and Refinement . . . . . . . . . . . . . . . . . . . . . . 39
Juncao Li, Xiuli Sun, Fei Xie, and Xiaoyu Song

High Confidence Subsystem Modelling for Reuse . . . . . . . . . . . . . . . . . . . . . 52
Birgit Penzenstadler and Dagmar Koss

A Trustable Brokerage Solution for Component and Service Markets . . . 64
Colin Atkinson, Daniel Brenner, Oliver Hummel, and Dietmar Stoll

Component Selection and Reuse Repository

Recommending Typical Usage Examples for Component Retrieval in
Reuse Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Yan Li, Liangjie Zhang, Ge Li, Bing Xie, and Jiasu Sun

A Reuse Repository System: From Specification to Deployment . . . . . . . . 88
Vanilson Arruda Burégio, Eduardo Santana de Almeida,
Daniel Ludrédio, and Silvio Lemos Meira

COTS Selection Best Practices in Literature and in Industry . . . . . . . . . . 100
Rikard Land, Laurens Blankers, Michel Chaudron, and
Ivica Crnković

Mining Open Source Component Behavior for Reuse Evaluation . . . . . . . 112
Ji Wu, Chun Wang, Xiao-xia Jia, and Chao Liu



X Table of Contents

Product Line

Combining Different Product Line Models to Balance Needs of Product
Differentiation and Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Juha Savolainen, Juha Kuusela, Mike Mannion, and
Tuomo Vehkomäki

Integrating Component and Product Lines Technologies . . . . . . . . . . . . . . 130
Elder Cirilo, Uirá Kulesza, Roberta Coelho,
Carlos J.P. de Lucena, and Arndt von Staa

Feature Implementation Modeling Based Product Derivation in
Software Product Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Xin Peng, Liwei Shen, and Wenyun Zhao

Feature-Oriented Analysis and Specification of Dynamic Product
Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Jaejoon Lee and Dirk Muthig

Managing Large Scale Reuse Across Multiple Software Product Lines . . . 166
N. Ilker Altintas and Semih Cetin

Quality Assessment in Software Product Lines . . . . . . . . . . . . . . . . . . . . . . . 178
Leire Etxeberria and Goiuria Sagardui

Managing Variability in Reusable Requirement Models for Software
Product Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Hassan Gomaa and Erika Mir Olimpiew

Domain Models and Analysis

A BDD-Based Approach to Verifying Clone-Enabled Feature Models’
Constraints and Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Wei Zhang, Hua Yan, Haiyan Zhao, and Zhi Jin

Performing Domain Analysis for Model-Driven Software Reuse . . . . . . . . . 200
Daniel Lucrédio, Renata P. de M. Fortes,
Eduardo S. de Almeida, and Silvio Lemos Meira

Exploiting COTS-Based RE Methods: An Experience Report . . . . . . . . . . 212
Nan Niu and Steve Easterbrook

Towards Reusable Automation System Components . . . . . . . . . . . . . . . . . . 217
Thomas Aschauer, Gerd Dauenhauer, and Wolfgang Pree

Service Oriented Environment

An Approach to Domain-Specific Reuse in Service-Oriented
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Jianwu Wang, Jian Yu, Paolo Falcarin, Yanbo Han, and
Maurizio Morisio



Table of Contents XI

View-Based Reverse Engineering Approach for Enhancing Model
Interoperability and Reusability in Process-Driven SOAs . . . . . . . . . . . . . . 233

Huy Tran, Uwe Zdun, and Schahram Dustdar

A Lightweight Approach to Partially Reuse Existing Component-Based
System in Service-Oriented Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

He Yuan Huang, Hua Fang Tan, Jun Zhu, and Wei Zhao

Components and Services

Towards Variable Service Compositions Using VxBPEL . . . . . . . . . . . . . . . 257
Chang-ai Sun and Marco Aiello

Abstract Reachability Graph for Verifying Web Service Interfaces . . . . . . 262
Xutao Du, Chunxiao Xing, and Lizhu Zhou

Reuse: From Components to Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Alberto Sillitti and Giancarlo Succi

Active Binding Technology: A Reuse-Enabling Component Model . . . . . 270
Anmo Jeong, Seungnam Jeong, Yoonsun Lim, and Myung Kim

Collective Reuse of Software Components Speeds-Up Reliability . . . . . . . . 274
Iaakov Exman, Guy Zohar, and Yehuda Hassin

Refinement of Component Model Standards and Conventions . . . . . . . . . . 278
Hazleen Aris and Siti Salwah Salim

Reuse Approaches and Pattern

Identifying and Improving Reusability Based on Coupling Patterns . . . . . 282
Andrea Capiluppi and Cornelia Boldyreff

Conquering Fine-Grained Blends of Design Patterns . . . . . . . . . . . . . . . . . . 294
L. Sabatucci, A. Garcia, N. Cacho, M. Cossentino, and S. Gaglio

Pattern-Based Transformation Rules for Developing Interaction Models
of Access Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Dae-Kyoo Kim and Lunjin Lu

Reuse Approaches and Frameworks

Balancing Quantification and Obliviousness in the Design of
Aspect-Oriented Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Linda Seiter

Lightweight, Semi-automated Enactment of Pragmatic-Reuse Plans . . . . 330
Reid Holmes and Robert J. Walker



XII Table of Contents

Constructing Flexible Application Servers with Off-the-Shelf
Middleware Services Integration Framework . . . . . . . . . . . . . . . . . . . . . . . . . 343

Yan Li, Minghui Zhou, Donggang Cao, and Lu Zhang

Reuse Approaches and Methods

SAM: Simple API for Object-Oriented Code Metrics . . . . . . . . . . . . . . . . . 347
Adam Edelman, William Frakes, and Charles Lillie

Leveraging Source Code Search for Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Hans-Jörg Happel, Thomas Schuster, and Peter Szulman

An Experimental Evaluation of Documentation Methods and
Reusability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Martin Blom, Eivind J. Nordby, and Anna Brunstrom

An Empirical Comparison of Methods for Reengineering Procedural
Software Systems to Object-Oriented Systems . . . . . . . . . . . . . . . . . . . . . . . 376

William B. Frakes, Gregory Kulczycki, and Natasha Moodliar

Appendix: Workshop and Tutorial Abstracts . . . . . . . . . . . . . . . . . . . . . . . . 390
Jianjun Zhao and Jeff Poulin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 1–13, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Introducing Architecture-Centric Reuse  
into a Small Development Organization* 

Hans-Jörg Beyer1, Dirk Hein1, Clemens Schitter1, 
Jens Knodel2, Dirk Muthig2, and Matthias Naab2 

1 WIKON Kommunikationstechnik GmbH 
Luxemburger Str. 1-3, 67657 Kaiserslautern, Germany 

{hjb,dhe,csc}@wikon.de  
2 Fraunhofer Institute for Experimental Software Engineering (IESE) 

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany 
{jens.knodel,dirk.muthig,matthias.naab}@iese.fraunhofer.de  

Abstract. Reuse promises cost-effective development and maintenance of 
software systems. Profiting from reuse, however, requires an upfront in-
vestment into creating building blocks to be reused by applications. When 
therefore required resources are limited, creating reusable building blocks 
practically often means migrating existing software assets into reusable 
components while concurrently realizing new developments. This pragmatic 
approach, which is especially often found in small organizations, often frus-
trates the vision of successful reuse across similar products. 

This paper, however, presents a success story of iteratively introducing ar-
chitecture-centric development at Wikon GmbH. This small German company 
develops remote monitoring and controlling devices with a small team of three 
engineers only. The presented approach for adopting systematic reuse eventu-
ally reduced effort for development and testing by more than 35% without any 
decline in quality.  

Keywords: Architecture-centric development, architecture compliance check-
ing, embedded systems, reuse, software architecture, technology transfer. 

1   Introduction 

Reuse has been generally accepted as one promising way of tackling the challenges of 
software development organizations. It reduces development time and cost, as well as 
effort spent on assuring the quality of the resulting product. Hence, reuse frees re-
sources in a development organization that then can focus on new or special function-
ality and thus, leads eventually to more attractive products. Profiting from reuse, 
however, requires an upfront investment into creating assets to be reused later. To 
perform this task successfully, experts are needed, as desperately as for the ongoing 
                                                           
* This work was performed as part of the project ArQuE (Architecture-Centric Quality Engi-

neering), which is partially funded by the German Ministry of Education and Research 
(BMBF) under grant number 01 IS F14. 



2 H.-J. Beyer et al. 

product developments that typically cannot be delayed. Consequently, creating reus-
able assets in practice often means transforming existing software pieces into reusable 
components while concurrently realizing new developments. This combination is hard 
to implement successfully in practice and thus organizations often end up in trying ad-
hoc reuse (e.g., by “copy & paste”) and typically fail.   

In this paper, however, we present a success story in establishing an architecture-
centric approach at a small development organization, Wikon GmbH. We applied 
product line engineering concepts to achieve reuse at a higher level of abstraction than 
source code. Iteratively, we evolved the development organization towards systematic 
reuse by introducing an architecture-centric strategy for product development. The 
Wikon products are embedded systems (measurement devices that monitor technical 
facilities remotely) developed by a team of three people: two developers and one 
person mainly responsible for quality assurance. Compared to the previous product 
generation, the new strategy of architecture-centric development saved 12 person-
months of development time (from 32 to 20 person-months) and 3 person-months for 
quality assurance (mainly testing, from 8 to 5 person-months). At Wikon GmbH, the 
investment hurdle was overcome by the collaboration with Fraunhofer IESE in a joint 
research project. By means of this project, Wikon was convinced to start introducing 
new architecture-centric activities that eventually led to the achievement of the reuse 
gains mentioned above. However, the results show that an architecture-centric prod-
uct line approach can be successfully scaled down to small organizations.  

In Section 2, we discuss what we understand by the term architecture-centric de-
velopment in general, while Section 3 presents how we instantiated it at Wikon. Fur-
thermore, Section 3 presents an overview of architecting the Wikon products over 
more than one year. Then Section 4 compares the results to the previous product gen-
eration and presents the lessons learned from a non-technical, qualitative viewpoint. 
Finally, we provide some concluding remarks in Section 5. 

2   Architecture-Centric Development 

Software architecture is defined as the fundamental organization of a system embod-
ied in its components, their relationships to each other and to the environment, and the 
principles guiding its design and evolution [8]. All software systems developed have 
an architecture, but not always it has been designed consciously, and there often exists 
no explicit documentation describing it. Architectures provide critical abstractions 
that make it possible to reason about and describe the structure and behavior of a 
system. They facilitate communication among several stakeholders of a system and 
enable discussions about the system characteristics. In our opinion, architectures are 
the means to express, negotiate, and resolve competing concerns of the various stake-
holders of a system. 

Ideally, the architecture would cover the different needs and concerns of the various 
stakeholders of the software system from just one perspective in a simple view. How-
ever, due to the inherent complexity of software systems, architectures are in practice 
complicated constructs, which cannot be captured in just one view. To completely de-
scribe architectures, the state-of-the-art in architecting (e.g., see [4], [5], [6], [7], [10], 
[13], [14]) proposes using several perspectives, which results in documentations 



 Introducing Architecture-Centric Reuse into a Small Development Organization 3 

consisting of multiple architectural views. Here, a view is a representation of a whole 
system from the perspective of a related set of concerns [8] and is based on a defined 
viewpoint. Thus, the viewpoint is a specification of the conventions for constructing and 
using a view [8]. Architectural views are typically customized for the development 
organization and tailored to the stakeholders’ needs. In architecture-centric develop-
ment, they are iteratively refined, adapted, and updated in each cycle. Such views serve 
as the central artifacts in system development for the following purposes: to communi-
cate about the system and its characteristics, to make decisions regarding a number of 
activities such as project planning, quality engineering, and development processes, to 
define, plan, and monitor the work assignments realized by developers, and to monitor 
and control the achievement of development goals. 

 

Fig. 1. Architecture-centric Development 

Figure 1 depicts the main concepts of architecture-centric development. We abstracted 
this conceptual view from concrete architecture definition methods, development proc-
esses, or techniques. Architecture-centric development is a goal-oriented approach with 
three major roles: stakeholders, architects, and engineers. The stakeholders are the people 
(an individual, a team, or an organization or classes thereof, see [8]) working with soft-
ware architectures or having an interest in or concerns with the software system. They use 
architectural views to ensure that the system’s quality profile, the functional requirements, 
and the business goals are achieved. In case of conflicting goals, they negotiate, balance, 
and decide about alternative solutions. The architects of a software system are the persons 
or teams who defined and constructed the architecture, supervise the creation of the sys-
tem, and evolve the architecture during maintenance and evolution. They know about 
different views on the architecture and are responsible for providing the views to the 



4 H.-J. Beyer et al. 

stakeholders and for assigning these views to their respective concerns. The architects pro-
vide solution concepts documented in architectural views and trigger appropriate software 
engineering activities. These activities are conducted by the engineers and eventually 
result in system artifacts detailing and implementing the solution concepts. The engineers 
are technical persons who contribute to software development by executing development, 
quality engineering, or reconstruction processes resulting in artifacts other than the archi-
tecture itself. They realize the technical solutions sketched out by the architecture. 

In short, the architecture is regarded as one of the most important artifacts in the 
lifecycle of a software system. Thus, architecture-centric development aligns all ac-
tivities with the architecture and uses architectural views as communication vehicle. 

3   Architecting at Wikon 

This section gives an overview how we instantiated architecture-centric development 
at Wikon. The Wikon GmbH has been a manufacturer of remote control systems 
(hardware and software) for more than 15 years. Currently, the company consists of 
about 25 employees. One of their main applications are battery-powered remote con-
trol systems (the XENON series) for the energy sector (e.g., water, gas, heat, or liquid 
gas meters). The systems collect data from different meter types (e.g., different proto-
col interfaces, pulse outputs) and transmit the data in regular intervals to the Wikon 
Internet server platform, called WatchMyHome, using a GSM modem. Customers 
can access the WatchMyHome server and view the measurement data remotely. If 
necessary, customers can trigger activities based on the measurement data in order to 
control the facility monitored (e.g., refill a tank, plan the visits of technical service 
personnel, etc.). The scope of the work presented in this paper addresses only 
the embedded system – the family of measurement device called the XENON series. 
The XENON series is implemented in the programming language C (except for about 
1% lines of code written in Assembler). The XENON variants can be distinguished by 
the measurement sensor, the underlying hardware, the measurement protocol (when 
and how often are values measured and transmitted), and the GSM message format. 
The development team for XENON comprises three persons, one acting mainly as 
quality engineer and architect, the other two acting as developers. However, due to 
the fact that the development organization is rather small, the roles are not strict. The 
main effort is spent on software development and maintenance; however the three 
engineers are as well responsible for hardware engineering of the device. 

3.1   Iterative Development of the XENON8 Platform 

Architecting as an explicit activity was started at Wikon when the software for the 
XENON8 series of measurement devices was developed. In contrast to its ancestor – the 
XENON7 series – this new platform comprised a new microcontroller and a changed 
hardware configuration. While XENON7 offered a FlashRom with 32kByte program 
memory, XENON8 had a FlashRom with 64 KByte. The new hardware enabled the 
implementation of new functionality like firmware update over the air, an extended set 
of SMS commands, extended size for data logging. Formerly, the XENON7 platform  
 



 Introducing Architecture-Centric Reuse into a Small Development Organization 5 

had been developed and maintained in an implementation-centric way with ad-hoc reuse 
(i.e., by copy & paste of source code fragments); there was no architectural documenta-
tion available. The introduction of architecting at Wikon was supported by Fraunhofer 
IESE researchers. In particular, they enabled the technology and knowledge transfer on 
architecting, provided support for architecture compliance checking, and acted as exter-
nal reviewers of design and implementation. 

Figure 2 gives an overview of the Wikon product map, iterations in architecting, and 
other development activities that were selected and executed in an architecture-centric 
manner. The development of the XENON8 platform was started in mid 2006 with the 
first architecting activities aimed at systematic, strategic reuse. Four iterations of archi-
tecting have been conducted so far. (1) We documented an initial set of architectural 
views and started code restructurings accordingly. (2) The architecture was refined 
based on compliance checking results. These two iterations mainly addressed reuse 
aspects. (3) We extended the view set for better support of reuse aspects and populated 
these views. (4) This iteration is currently ongoing (dashed line represents the point in 
time when we prepared this paper) and deals with variability management. The main 
business goals for the design of the Wikon architecture were to increase flexibility to-
wards customer requirements and to reduce time to market for new product variants. To 
achieve these goals, the main design driver was to turn the monolithic implementation 
into explicit components, and to separate the application-specific parts from (poten-
tially) reusable core components.  

XENON7 Platform XENON8 Platform

 

Fig. 2. Architecture-centric Development at Wikon 

Iteration 1: The first architecting activity we conducted was to define the architecture 
of the XENON8 platform. To learn about the variability, we analyzed two variants of 
the ancestor platform XENON7 (X-GG and X-GA). For the architecture definition, 
we applied the architecting module of Fraunhofer PuLSE® (Product Line Software 
and System Engineering, please refer to [3] for details)1 methodology, which resulted 
in four architectural views, namely conceptual view (see Figure 3), structural view 
                                                           
1 PuLSE is a registered trademark of the Fraunhofer Institute for Experimental Software Engi-

neering (IESE) in Kaiserslautern, Germany. 



6 H.-J. Beyer et al. 

(see Figure 4), behavioral view (see Figure 5), and implementation view2. This initial 
documentation of the implemented architecture was partially reconstructed based on 
the analysis of the XENON7 platform. It enabled efficient discussions and reasoning 
on the abstraction level of the software architecture. Hence, the architectural views 
were used as a communication vehicle and served as a foundation for making.  

The conceptual view (see Figure 3) is the most abstract architectural view used for 
describing the Wikon architecture. This view captures the application domain by 
mapping the functionality of the system to conceptual components and showing con-
ceptual interfaces. It also depicts the interplay and relationships among the various 
elements. The conceptual view is interesting for all stakeholders (however, especially 
suited for everyone interested in a high-level overview of the system).The conceptual 
components are described by their responsibilities: An event is initiated at regular 
time intervals, by interrupts or by incoming external messages. Events are handled by 
an EventManager. The event activates the measurement devices and results in a set 
of activities: The measurement device executes an Processing of sensor data, com-
poses messages, and transfers them via a built-in GSM Modem sending text mes-
sages (SMS, Short Message Service) or data messages (PDU, Protocol Data Unit). 
The Protocol defines the format and syntax for accessing and reading Sensor values. 
The Configuration prescribes how the measurement device reacts to events. 

The structural view (see Figure 4) describes the functional decomposition of the 
system and captures the static structure of a system in terms of layers and subsystems, 
and the relationships between the various elements. The structural view depicts the 
top-level subsystems (see Figure 4a and b) and consists of two complementing parts. 
Figure 4a depicts how subsystems are logically grouped into layers, while Figure 4b 
describes the data and control flow from incoming sensor values to outgoing mes-
sages. The behavioral view (see Figure 5) illustrates how the architectural elements 
defined in the structural view interact with each other and realize the required behav-
ior. For that purpose, execution scenarios are used (i.e., short textual descriptions of 
anticipated usages of a system) represented in UML-based collaboration diagrams. 
The implementation view maps the elements of the structural view to the source code. 
It is therefore especially interesting for technical stakeholders like developers.  

Furthermore, we conducted static architecture compliance checking (see [9], [12] 
for related work on architecture compliance checking) to measure the distance of the 
intended target architecture and the existing implementations X-GA and X-GG. In 
total, 54% of the dependencies (i.e., includes, calls, or variable accesses) among sub-
systems violated the intended target architecture.  

Activities derived from iteration 1: Based on the documentation of the architecture, 
several activities were derived as support and improvement of the overall development: 
First, we introduced the configuration management system Subversion and aligned the 
storage of the implementation with the documented architecture. Previously, versions of 
the products could only be archived on the full code basis. This made tracking changes 
across multiple products very time-consuming and error-prone. Second, the implemen-
tation was restructured as prescribed in the structural view. Previously, all source code 
files had been stored in one flat directory. Traceability was ensured between the 
corresponding artifacts at the architecture level, the implementation level. In some 
                                                           
2 Due to confidentiality reasons we will not describe the architectural views in detail. 



 Introducing Architecture-Centric Reuse into a Small Development Organization 7 

cases, functionality was relocated during restructuring to remove architecture violations 
and achieve higher cohesion inside subsystems and lower coupling among subsystems. 
Third, clone detection was applied to identify and remove duplicates in the code at the 
implementation level. With this activity, we took a first step towards reuse by avoiding 
the multiple existence of equal or similar code and appropriately locating the respective 
functions. Fourth, the code documentation was improved by introducing the doxygen 
tool. 

 
Fig. 3. The Wikon Architecture – Conceptual View 

 

Fig. 4. The Wikon Architecture – Structural Views 

eventmanager

protocols

pic

modem

eventmanager

protocols

pic

modem

eventmanager

protocols

pic

modem

Subsystem

Method Name

 

Fig. 5. The Wikon Architecture – Behavioral View: Event-Driven Measurement Loop 

Iteration 2: After the implementation was restructured as described before, the com-
pliance between the initially intended architecture and the implemented architecture 
was checked. This time, only few architecture violations were discovered. Due to the  
intended restructuring and some technical constraints, it was partially necessary to 



8 H.-J. Beyer et al. 

update the architectural views to represent the architecture consistently. The subsys-
tems that were discovered to be common to all products were prepared for improved 
reuse. To achieve this, variable parts were extracted as far as possible into the subsys-
tem config. Thus, it became possible to concentrate the biggest portion of the adapta-
tion effort for a new product on two subsystems only: config and main. Config is a 
specific subsystem that was introduced to capture the major variability; main is the 
central startup subsystem that also represents some variability. 

Activities derived from iteration 2: The refinement of the architecture and the restruc-
turing to improve reuse led to another adaptation of the implementation. Further, a 
measurement program was defined to reveal potential disadvantages and risks of the 
restructuring for reuse. These metrics mainly focused on the resulting dependencies 
among the subsystems. If the principle of high cohesion and low coupling had been 
violated, there might be an adverse impact on quality attributes like maintainability. 
However, no potential problems were discovered in this step. 

Iteration 3: The third iteration of architecting started with a check of architecture 
compliance as described before. This was done to make sure that the changes to the 
architecture and implementation in iteration 2 and the subsequent activities would not 
lead to inconsistencies. During the elicitation of the most important quality attributes 
for Wikon, flexibility was highly prioritized. Based on this selection, architecture 
evolution scenarios [6] were defined that capture the exact nature of flexibility 
as expected by Wikon. Focusing on such concrete scenarios allows for an explicit 
treatment of the quality attribute at the architectural level. Therefore, we applied an 
organization-specific customization to the set of architectural views. The first archi-
tectural viewpoint we defined was the “Estimated impact viewpoint”. It represents an 
estimation by the Wikon experts on the impact of the individual evolution scenarios 
on the single subsystems. Through this viewpoint, the estimated effort of potential 
evolutions can be controlled better. Adding the knowledge about the likelihood of 
certain evolution scenarios, decisions can be derived on how to adapt the architecture 
in order to decrease the overall effort for evolution. For one specific scenario, the 
introduction of a new external hardware device, another viewpoint was defined. It 
investigates the encapsulation of hardware elements with respect to their usage by 
external subsystems. The better the internals of the devices are encapsulated, the 
lower the estimated impact of a replacement will be.  

Activities derived from iteration 3: After iteration 3, quality engineering was empha-
sized as an additional activity. Thus, the resulting code was reviewed by Fraunhofer 
IESE to assure high quality of the realization and adherence to the proposed concepts. 
Based on the introduced separation of common reusable parts and product specifics, 
benefits for the testing process were realized. That is, the common parts were thor-
oughly tested separately and only the specifics were tested for every product. Al-
though the earlier restructuring for reusable subsystems had achieved its goal to a 
large extent, some minor variations were still there. They were tackled in a further 
step dealing by the introduction of distinct preprocessor commands to resolve the 
variants. 

Iteration 4: This iteration of architecting is currently ongoing. It explicitly addresses 
and visualizes the comparison of multiple variants at the implementation level.  



 Introducing Architecture-Centric Reuse into a Small Development Organization 9 

4   Discussion – Platform Comparison XENON7 vs. XENON8 

To discuss the achievements of architecture-centric development with systematic, 
strategic reuse, we compare the products of the XENON8 platform to its predecessor 
platform, namely XENON7. Although the platform and the products are not equal 
(e.g., XENON8 offers to connect four sensors instead of two), we think that the two 
platforms can be compared. On top of both platforms, four distinct variants have been 
derived. For both platforms, all products are derived from the base variant (X-GG/GA 
and X-GGmm). Table 1 lists the reuse degree for the derived variants. The reuse de-
gree percentage indicates the amount of code of the respective base variant being 
reused: for XENON7 through ad-hoc reuse and for XENON8 through systematic 
reuse. It can be observed that the extent of reuse more than doubled for XENON8. 
Table 1 lists further the effort spent on development and testing of the product. The 
Wikon expectation was that product development for XENON8 would at least con-
sume similar effort as that for XENON7. The basis for this assumption was the fact 
that XENON8 is more complex to develop due to the increased number of sensors 
and changed hardware. Table 1 shows that, due to systematic reuse and architecture-
centric development, 12 person-months of development time could be saved. The 
overall effort for testing was reduced by 3 person-months because of the increased 
extent of reuse (i.e., core subsystems did not require new testing in other variants).  

Despite the reduced time to market and the reduced development and testing time, 
no increased vulnerability to errors could be detected in the first field releases of 
XENON8 variants. Table 2 shows the aggregated number of field defects reported by 
Wikon customers. For both platforms, only the first 6 months after the release of the 
base variant have been considered as reporting period (since more data for XENON8 
variants were not yet available). The overall product quality seems to be at least on an 
equal level. However, sound statement with respect to the product quality can only be 
made when more variants have been released to the market.  

At the implementation level, the following observation can be made using source 
code metrics. Table 3 compares the base variant of XENON7 (X-GA) with the base 
variant of the XENON8 platform (X-GGmm) capturing the snapshot after the restruc-
turing phase was completed. The code size of the base variant X-GGmm increased 
because of the reusable components and the enhanced functionality. Accordingly, the 
total number of files and functions increased. A fine-grained analysis of the added 
lines of code revealed that the new code is, to a very large extent, responsible for the 
new functionality. Due to the introduction of doxygen, the number of commented 
lines almost doubled. Since Wikon enabled variants managed by preprocessor state-
ments (e.g., #ifdef), the number of inactive lines increased significantly, too. A posi-
tive effect can be observed when analyzing code complexity. Both maximum nesting 
of control structures (e.g., switch, do, while, if and for statements) and cyclomatic 
complexity as defined by McCabe [11] decreased.  

Because of the limited amount of available resources the resource consumption of the 
final product is another important comparison criterion in the embedded system domain. 
At Wikon, we measured the resource consumption of an embedded system by the usage 
of ROM (i.e., the size of the binary program code). The mere restructuring and refactor-
ing of the source code had virtually no adverse impact on the resources consumption. 
Table 4 shows that the resource consumption for the XENON8 platform was increased 
for the most part by enhanced functionality. 



10 H.-J. Beyer et al. 

Table 1. Platform Comparison – Reuse, Development Effort, and Testing Effort 

Platform Product Reuse Degree Development Effort Testing Effort 
X-GG/GA – 10 person-months 2.5 person-months 
X-MB approx. 25% 10 person-months 2.5 person-months 
X-mm approx. 25% 6 person-months 1.5 person-months 

XENON7 

X-bb approx. 20% 6 person-months 1.5 person-months 
X-GGmm – 6 person-months 1.5 person-months 
X-MBmm approx. 60-70% 6 person-months 1.5 person-months 
X-mmmm approx. 60-70% 4 person-months 1 person-month 

XENON8 

X-bbmm approx. 60-70% 4 person-months 1 person-month  

Table 2. Platform Comparison – Aggregated Field Defect Data after 6 Months3 

Platform Field Defects Reported Software-caused Defects (in %) 
XENON7 4                       50% 
XENON8 2                       0%  

Table 3. Platform Comparison – Source Code Metrics  

Metric X-GGmm X-GA Comparison 
 X-GGmm to X-GA 

Total Number of Files 
(Code/Header) 

55 
(23/22)

45 
(21/24)

22%  
(10%/-8%)  

Total Number Lines of Code 
(active/inactive/commented) 

41.071
(9.287/1.6742/9.732)

22.695
(7.734/5.996/5.877)

81%  
(20%/179%/66%) 

 %92351891 snoitcnuF fo rebmuN
File Size in LOC (max/avg) 5.104/747  2.782/504 83%/48% 
Function Size in LOC (max/avg) 1.153/91 947/75 22%/22% 
Maximal  Cyclomatic Complexity 71 97 -27% 

85 gnitseN lamixaM -38%  

Table 4. Platform Comparison – Resource Consumption 

Platform Program Memory Usage 
 % 79-69 etyBK 23 7NONEX

XENON8 (porting of XENON7 code) 64 KByte 48 % 
XENON8 (restructuring, minimal enhancements) 64 KByte 52 % 
XENON8 (enhanced functionality) 64 KByte 74 %  

Shifting the development towards an architecture-centric paradigm with reuse and in-
troducing derived activities like configuration management are an organizational in-
vestment. In case of Wikon, this investment hurdle could be overcome due to the joint 
research project. Without this project, Wikon as a small development organization 
would not have been convinced to dedicate resources and effort to architecture-centric 

                                                           
3 Note that the explanatory power of Table 2 is still preliminary due to less delivered products. 



 Introducing Architecture-Centric Reuse into a Small Development Organization 11 

development. However, the experiences made provide evidence that deciding in favor 
of architecture-centric development is positive. This approach paid off for Wikon, and 
we believe that it is worthwhile to apply a product line approach for small development 
organizations (even without external funding). However, it has to be scaled-down and 
customized to the small organization. The iterative strategy (e.g., tailoring activities, 
migrating one part after the other, and refining the architecture in several increments) 
was the key to success since it allowed us to apply the small amount of available effort 
very effectively. 

From an organizational point of view, the most significant change is that the role of 
the architect at Wikon became an active one. The tasks and responsibilities of the 
architect are now clearly defined and architecting has a clear impact on product de-
velopment (as opposed to the situation when developing the XENON7 series). An-
other lesson learned is that architecting requires customizations to the development 
organization. All activities have to be tailored to the business goals, the organization 
and the engineers. In our opinion, finding the right customization is most crucial when 
introducing change into a development organization. The tool-supported analyses by 
the Fraunhofer SAVE tool (Software Architecture Visualization and Evaluation, see 
[9]) – an Eclipse plug-in for conducting architecture analyses – helped to reduce the 
effort for redocumentation of the implemented architecture, architecture compliance 
checking, and controlling the evolution of the system.  

In short, the main lesson learned is that strategic reuse anchored on an architectural 
level is a worthwhile goal for small development organizations. The investments paid 
off, and the results are perceived as successful by the Wikon engineers. 

5   Conclusions and Outlook 

Successfully transferring new ideas and concepts from research into industrial prac-
tice is a challenge. In this experience report, we discuss our lessons learned in intro-
ducing architecture-centric development at Wikon. The results show that investments 
into reuse and architecting are worthwhile, even for small development organizations 
and without external funding. The shift of the development paradigm from ad-hoc 
reuse towards pro-active, systematic reuse can be considered as successful. For the 
first product generation developed, the architecture-centric development saved 12 
person-months of development time and 3 person-months (both approx. 37%) for 
quality assurance (compared to the previous product generation). At the same time, no 
decrease in the quality was observed for the first products in the field. So far, the 
architecture-centric development with reuse has supported the construction of four 
measurement devices.  

The main challenges when introducing architecture-centric development were, on the 
one hand, to find the appropriate customization of software architecture practices pro-
posed by literature. On the other hand (and this is especially true for small development 
organizations), the initial investment hurdle has to be overcome. At Wikon, we were able 
to break this barrier due to a joint research project and due to the definition of an iterative 
strategy. For us, the results achieved are hints that investment in architecture-centric 



12 H.-J. Beyer et al. 

development and reuse pays off in general. We think that an iterative, architecture-centric 
product line approach can be scaled down to small development organizations. 

The evolution and maintenance across these variants over time is the next chal-
lenge to be addressed by Wikon. Due to reduced time to market and increased flexi-
bility, it is expected that the number of variants supported will increase over time. 
One open issue here is the management of variability. Up to now, no explicit variation 
points have been introduced, and there are no feature models or decision models at the 
moment. The variant resolution is purely manual. The introduction of (semi-) auto-
mated variant management (ideally tool-supported) remains a challenge. Furthermore, 
more variants mean higher system complexity. The architecture has to be iteratively 
refined and updated with respect to the new variants. An even stronger split between 
product-specific and reusable components is one of Wikon’s design goals. To ensure 
the reuse benefits, architecture compliance checking will be applied regularly in the 
future. Detected violations are reviewed and, if critical, be removed. The next steps at 
Wikon will address the introduction of explicit variability management and the defini-
tion of an architectural view that captures the set of multiple, implemented variants 
and allows their comparison on an architectural level. 

Further ongoing and future work aims at sustaining architecture-centric develop-
ment at Wikon. To monitor the success of architecture-centric development with 
strategic reuse, a measurement strategy applying the quality improvement paradigm 
(QIP, see [1]) and the goal question metric paradigm (GQM, see [2]) has to be de-
fined. This measurement strategy is ideally an automated early-warning system for 
quality decays. Fraunhofer IESE will generalize the experiences made in establishing 
reuse in small development organizations.  

References 

1. Basili, V., Caldiera, G., Rombach, H.D.: The Experience Factory. In: Marciniak, J. (ed.) En-
cyclopedia of Software Engineering, vol. 1, pp. 469–476. John Wiley Sons, Chichester 
(1994) 

2. Basili, V., Caldiera, G., Rombach, H.D.: The Goal/Question/Metric Paradigm. In: Marciniak, 
J. (ed.) Encyclopedia of Sofware Engineering, vol. 1, pp. 528–532. John Wiley & Sons, 
Chichester (1994) 

3. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud, J.-
M.: PuLSE: A Methodology to Develop Software Product Lines. In: Proceedings of the Fifth 
ACM SIGSOFT Symposium on Software Reusability (SSR 1999), pp. 122–131 (1999) 

4. Bosch, J.: Design and Use of Software Architectures. Addison-Wesley, Reading (2000) 
5. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.: 

Documenting Software Architectures. Views and Beyond. Addison-Wesley, Reading (2003) 
6. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures. Methods and Case 

Studies. Addison-Wesley, Reading (2002) 
7. Hofmeister, C., Nord, R., Soni, D.: Applied software architecture. Addison-Wesley Longman 

Publishing Co., Inc., Amsterdam (2000) 
8. IEEE Computer Society, IEEE Recommended Practice for Architectural Descriptions of 

Software-Intensive Systems, IEEE Std-1471-2000 (2000) 



 Introducing Architecture-Centric Reuse into a Small Development Organization 13 

9. Knodel, J., Popescu, D.: A Comparison of Architecture Compliance Checking Approaches. 
In: 6th IEEE/IFIP Working Conference on Software Architecture, Mumbai, India (January 
2007) 

10. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Softw. 12(6), 42–50 (1995) 
11. McCabe, T.: A Complexity Measure. IEEE Transactions on Software Engineering 2(4), 

308–320 (1976) 
12. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software Reflexion Models: Bridging the Gap 

between Design and Implementation. IEEE Transaction on Software Engineering 27(4), 
364–380 (2001) 

13. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline. 
Prentice-Hall, Englewood Cliffs (1996) 

14. Zachman, J.A.: A framework for information systems architecture. IBM Systems Jour-
nal 26(3), 277–293 (1987) 



An Architectural Style for Data-Driven Systems

Reza Mahjourian

Department of Computer and Information Science and Engineering
University of Florida

Gainesville, FL 32611, USA
rezam@ufl.edu

Abstract. Data-driven systems and applications are specialized software solu-
tions for acquisition, management, and presentation of information. These
systems are usually developed using the same software tools, technologies, and
processes used for creating any other type of software. Not only is this approach
inefficient, but also it results in extreme redundancies due to the inherently repet-
itive nature of these applications. However, data-driven systems exhibit charac-
teristics which can be exploited for extensive reuse across a single application or
a family of applications. In this paper, we present XPage, an architectural style
which is especially designed for building data-driven systems. We also provide
several case studies from real-world deployments of XPage to help evaluate its
efficiency and flexibility for developing real-world solutions.

1 Introduction

Data-driven systems are software solutions for information and data management. The
two primary functions of these systems are acquisition and presentation of information.
Information acquisition is typically performed using data entry forms or via interfac-
ing with external data sources. Information presentation is concerned with retrieval and
display of stored information to the user with appropriate navigation and querying facil-
ities. Data-driven systems are also characterized by requiring intensive user interaction
both for acquisition and retrieval of information. They are beyond doubt among the
most common types of customized software systems in use today. University regis-
tration systems, e-commerce applications, content management systems, financial and
accounting applications, a personal address book, and an online photo album are a few
examples of data-driven applications.

Despite the existence of a consistent demand for development of new data-driven
systems, they are mostly developed as one-off projects, with little reuse taking place
beyond what is offered by the development technologies and programming languages
used. Recently, the software industry has introduced some development frameworks
which offer higher-level programming libraries to help with rapid development of data-
driven applications. However, these frameworks are not high-level enough to prevent
the repetitive nature of data-driven systems from showing up in the final programs as
repetitions of nearly identical code segments or constructs. Moreover, none of these in-
dustrial frameworks offer an explicit software architecture, and the software engineering
decisions behind their designs are buried in their implementations.

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 14–25, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



An Architectural Style for Data-Driven Systems 15

Academic research on producing agile techniques or methods for developing data-
driven systems is severely lacking as well. Software engineering researchers consider
data-driven applications to be in the realm of database research, because of their concen-
tration on information management tasks. In addition, the seemingly primitive nature
of “reading and writing structured data” appears to be lacking the necessary complex-
ity to qualify as an interesting software research problem. On the other hand, database
researchers have little interest in solving the software engineering challenges involved
in streamlining development and managing complexity of software systems. In spite of
that, it is quite surprising to know that the very little work done in this area comes from
the database research community, and not from the software research community.

In this paper, we present an architectural style [1,2], which is specifically designed
for creating and maintaining data-driven systems. This architectural style has been ex-
tracted from a software framework we developed in 2001 and gradually extended after-
wards. We have dubbed the architectural style XPage, following the name of the original
framework.

Before discussing the XPage style in detail, we are going to review the related work
in Sect. 2. Section 3 presents the architectural style and its key components and con-
nectors. Section 4 provides three cases studies from real-world applications developed
based on this style. Finally, Sect. 5 wraps up the paper with conclusions.

2 Related Work

A comprehensive framework for developing data-driven applications should address a
wide array of concerns, from providing efficient data storage and retrieval mechanisms,
to handling complex user interactions in the presentation and view layer. To our best
knowledge, no other architectural style has been proposed to support development of
data-driven systems to this extent. However, there are some solutions proposed by the
database research community which focus on related problems.

The most notable example in this category is WebML [3,4]. WebML is a product
which provides a model-based development environment with a database-oriented view.
The core of the application is created with a “structural model” which outlines the
data model. Special-purpose data-aware “units” or “operations” are provided for data
presentation or manipulation tasks. A program is created by associating these special
units with the objects defined in the structural model. A “navigation model” is used to
establish the links between different pages and content units.

In [5,6], Vigna proposes a solution based on developing the entire application out
of the Extended ER (Entity Relationship) model [7]. In their solution, the cardinality
constraints on entity relationships in the ER model are used to decide an appropri-
ate presentation and navigation model for the application. Based on an augmented ER
model, their software generates SQL statements for creating the required tables. The de-
veloper is expected to execute these statements to create the underlying database. User
interface forms are also automatically created based on the ER model. Afterwards, the
application can be customized directly by modifying the generated forms.

Even though the organization of data-driven applications is mostly influenced by the
structure of their underlying data repositories, ER models lack the required expressive



16 R. Mahjourian

power to specify the structure and behavior of an entire application. In any data-driven
system, a key factor in deciding the appropriate navigation and presentation model is
the predefined flow of information according to its underlying business processes. This
information is not captured in the ER model. A flexible software development frame-
work requires mechanisms for specifying the business logic and view organization of an
application independently of its underlying data model. Another undesirable side-effect
of using ER models is that since Relational Databases Management Systems (RDBMS)
are not directly based on ER models, the ER-based development tools have to assume
responsibility for creating and managing the relational database as well. However, this is
inflexible and counter-productive, since in many real-world situations there are database
experts who prefer to design and fine tune the database independently. A requirement
for working with legacy databases poses a similar problem.

Recently, we have witnessed introduction of some industrial software development
frameworks which enable web developers to create data-driven applications more effi-
ciently and rapidly. Examples of these frameworks include Ruby on Rails and CakePHP.
The core of these frameworks is based on the concept of Active Records, which provide
a two-way mapping between object classes and database tables. Any instantiation or
modification of Active Records is directly reflected on their associated tables. Foreign
key relationships are exposed in Active Records by linking attributes of one object to the
instances of the referred objects. To implement the logic of an application, these frame-
works recommend developers to write “controllers”, which are service entry points for
user defined operations on the data. However, they do not offer any higher-level com-
ponents for the view layer of an application. The scaffolding technique can be used to
rapidly create the view layer code out of the structure of the Active Records. However,
the produced artifact is low-level code and the relationship between this code and the
original Active Record can be lost with subsequent modifications to the either artifacts.
Another source of inefficiency with these frameworks is that the standard mechanism
for retrieving data from Active Records involves traversing them row by row to reach
individual data objects. This suggests a low-level programming style, which for many
data-driven scenarios can be entirely abandoned for a high-level view of the “whole
data set”.

None of these solutions address the software engineering side of the problem. Al-
though they facilitate implementation of data-driven applications, their lack of an ex-
plicit architectural design makes it difficult to analyze these solutions with regard to
issues of interest to the software engineering community. Moreover, since the rela-
tionship between implementation-level constructs and the architectural components and
connectors is not clear, it is not easy to determine their potential for reuse across differ-
ent domains. Nor can one try to formalize a process for designing, implementing, and
maintaining the components needed for these solutions.

Another class of solutions which are extensively employed in creating data-driven
systems are various middle-ware technologies such as Enterprise Java Beans [8]. These
middle-ware technologies offer standardized interfaces for accessing and manipulating
data sources, and include basic services such as concurrency, distribution, security, and
component naming and registry. Such technologies can provide the platform for han-
dling the data storage and retrieval tasks in data-driven systems, and thereby answer one



An Architectural Style for Data-Driven Systems 17

side of the problem. However, they do not offer specialized solutions for the view layer.
Another shortcoming of these technologies is that they do not suggest any particular
architecture on their surrounding system. The assumption is that developers use “glue”
code to instantiate, utilize and maintain these objects whenever necessary. Despite be-
ing flexible, this is less in line with the spirit of software architectures, which advocate
reuse by formalizing exemplification of good engineering solutions.

In [9,10] Mattmann et al. present the OODT reference architecture, which is a solution
for locating remote data sources and aggregating data from distributed data providers.
OODT components and connectors provide the services of data source registry, iden-
tification, and querying on top of the industrial middle-ware technologies. Although
OODT components and connectors can be employed for creating data-driven systems,
like middle-ware technologies, OODT does not offer any solution for the view layer
of these systems, mainly because its focus is on a different problem. Abstracting and
modeling the interactions in the view layer of data-driven applications is much more
complex than modeling the data layer operations, which more or less exhibit a linear
input-output model. Lastly, like middle-ware technologies, OODT’s solution is
“programmer-intensive” [9] as it does not employ a high-level description language.

3 The Architectural Style

In this section, we introduce the XPage architectural style and its accompanying devel-
opment framework. First we provide an overview of the style and its key characteristics.
We then proceed to introduce some of the individual components and connectors.

3.1 Overview

Overall Architecture. An XPage application is comprised of a set of interconnected
View Pages. A View Page can be regarded as an abstraction of a web page, or a desk-
top form. Each View Page, in turn, contains one or more View Forms. The View Forms
are data-aware components which can directly interact with the end-user. XPage of-
fers different types of View Forms for common information acquisition, manipulations,
and presentation tasks. Each View Form is connected to one or more Data Sources. A
Data Source abstracts the data model of the underlying data source or destination. Data
Sources, in turn, are associated with Data Adapters, which are connectors whose func-
tion is to provide a consistent interface over different types of data repositories available
to the application. View Pages and View Forms constitute the view layer of an XPage
application, while Data Sources and Data Adapters constitute its data layer. Figure 1
shows the overall architecture of XPage and its key components and connectors.

XPage components and connectors rely on a predefined initialization and launch
protocol for their operation. Upon receiving a request for a specific View Page from the
end-user, a Coordinator connector locates the corresponding XML file and instantiates
the View Page component. This process is repeated for the View Forms in the loaded
View Page and for any other components and connectors referenced in them. Once the
component and connector hierarchy is loaded, a sequence of events are propagated in
the hierarchy starting at the root View Page component. Some of the key events are



18 R. Mahjourian

View Page View Form

Row Selector

View Attr.

View Input

Transroute

So
ur

ce
 C

oo
rd

.

In
pu

t C
oo

rd
.

Fo
rm

 C
oo

rd
.

View Link

Pa
ge

 C
oo

rd
.

Data Source

Data Attr.

A
da

pt
er

 C
oo

rd
.

D
om

ai
n 

C
oo

rd
.

Data Adapter

Domain

Data Repository

Fig. 1. The overall XPage architecture

load, init, register, process read, process write, and commit. User input and preferences
are also passed to the components in the form of Message objects at various points
in this sequence. Depending on its function, each component and connector may do a
different task upon receiving the events.

Component and Connector Granularity. The components and connectors of XPage
are divided into two distinct groups, based on their granularity. The coarse-grained
components and connectors, are first-level players in the architecture of an application.
They bundle considerable amount of functionality to make them capable of handling
significant data-driven responsibilities in a data-driven system. However, the XPage
style defines these coarse-grained components and connectors in terms of a number of
common fine-grained components and connectors. The fine-grained components and
connectors are generalizations of the common structural and behavioral elements which
constitute the coarse-grained components.

Communication. In the data layer, components communicate with direct synchronous
messages. In the view layer, communications take place by sending asynchronous
messages which are carried by Message objects. Some particular interactions are so
frequently used in data-driven systems that they demand for special treatment. For in-
stance, in many cases, components rely on receiving foreign key parameters to deter-
mine what data item to display or manipulate. On a data entry form, a foreign key
parameter must be received to establish a relationship between the newly created en-
tity and its related entities in the database. Other frequent scenarios include requesting
particular sort orders or filters on the presented information. In order to facilitate these
interactions, XPage offers a Message type hierarchy, which covers various user inter-
face events as well as inter-component communications.

Messages can be private or global. Private Messages have a particular recipient ad-
dress, while Global Messages carry parameter-like values and are available to the entire
component hierarchy. The private and global messages allow components to implement
“push-”, or “pull-”based communications, which are both handy in data-driven systems.
In the view layer, all Messages are handled by a universal connector called the Tran-
sroute connector, which locates message recipients by their registered addresses. The
Transroute connector is also responsible for processing user interface transitions such
as submission of forms or loading of a new View Page.



An Architectural Style for Data-Driven Systems 19

The XPage Language. All the coarse-grained and fine-grained components of XPage
are configured using an XML-based domain-specific language. A set of all such XML
files is enough to describe an XPage application. At run time, XML files are loaded
to instantiate and initialize the components and connectors upon request. The XPage
framework employs an object caching mechanism to increase the performance of the
application.

Extensibility. Clearly, complex applications have requirements which cannot be
satisfied with the generic functionalities embedded in XPage components and con-
nectors. Most components and connectors feature a number of extension points to
let developers customize their behavior. The extension points are usually associated
with the predefined events. There are two extension points for every event. For ex-
ample, corresponding to the process write event, there are two extension points called
before process write and after process write. Developers can plug in custom code in
these extension points to directly control the behavior of the components. For example,
a data entry form can use the before process write extension to perform additional val-
idations and potentially prevent the component from storing the data by canceling the
process write event.

In the following sections, we describe the XPage components and connectors in more
detail.

3.2 Data Layer

Data Adapter. This coarse-grained connector is used to abstract away the heteroge-
neous interfaces of different types of data repositories. Whether the data repository is an
RDBMS, an XML file, or a gateway to a remote web service, appropriate Data Adapters
make them available to the application through a consistent interface which allows for
data retrieval and data manipulation. Data Adapters translate the service requests into a
language understandable by the underlying data repository. For instance, a request can
be translated into a SQL query, an XPath query, or a web service invocation message.
Data Adapters also offer transactional services to maintain the integrity of data reposi-
tories when multiple components need to collaborate for a single data operation.

Data Source. This coarse-grained component works on top of a Data Adapter. Data
Sources are used to elevate the flat interface provided by Data Adapters to a hierarchi-
cal object model suitable for complicated interactions that view layer components need.
Like Data Adapters, Data Sources provide data retrieval and manipulation interfaces,
however in a more structured manner. Users of a Data Source work with individual
Data Attributes which correspond to the columns in its data source or target. In addi-
tion, Data Sources can enforce various integrity constraints by collaborating with other
Data Sources on related entities.

Data Attribute. In its simplest form, this fine-grained component corresponds to a col-
umn in a query definition. Data Attributes are associated with Data Sources. When the
Data Source is retrieving data, its Data Attributes receive values for the correspond-
ing columns. After a user requests the Data Source to retrieve a row of data, he is ex-
pected to contact its Data Attributes to get the retrieved values. Likewise, for storing and



20 R. Mahjourian

manipulating data, the user is expected to populate the Data Attributes with desired val-
ues before asking the Data Source to perform the operation. In addition, Data Attributes
respond to a number of Messages for filtering the data source or requesting a particular
sort order. They pass these requests up to their parent Data Source.

Data Attributes have a type hierarchy which determines their features and capabil-
ities. Two of the important Data Attribute types are Primary Key Data Attribute, and
Foreign Key Data Attribute. Primary Key and Foreign Key Data Attributes are required
for data operations like create, update and delete. They let the Data Source know which
set of the data values populated in the Data Attributes should be used to locate the af-
fected data items, and which set should be used to provide the new or updated data.
They also guide the Data Source to enforce various integrity constraints. The type of a
Data Attribute also determines to which requests that Data Attributes can respond. For
example, it determines whether the attribute is updateable or searchable. More com-
plex Data Attributes like the Derived Data Attribute can interface with auxiliary Data
Sources to automatically calculate derived and aggregated values.

Domain. This fine-grained component is used to help guarantee the validity of data
handled by Data Attributes. If a Data Attribute is associated with a particular Domain
component, all requests for writing to or reading from that Data Attribute pass through
the associated Domain component for validation. Each Domain component provides
two services of read and write. In addition to checking validity of values, these two
services can also convert between internal and view-level representations of data val-
ues. For example, thousands separators can be automatically added and removed for
numbers upon reading and writing of the data.

Figure 2 depicts the exchanged messages for an example data retrieval scenario. An
external entity first configures the Data Attributes of a Data Source and then retrieves
one row of information. Some internal messages are not shown.

Domain

Data Attr

Domain

Data Source

1.Sort

4.GetValue Data Attr

3.1.Retrieve

3.1.1.1.1.Result

5.GetValue

2.Filter

DB

3.Retrieve
Data Adapter

3.
1.

1.
1.

R
es

ul
t

3.
1.

1.
R

et
ri

ev
e

Fig. 2. Example data layer interaction

3.3 View Layer

View Page. An XPage application is implemented as a set of View Pages, which are
coarse-grained components. View Pages contain the data-aware View Forms, as well as
some presentation-only components like Icons and Headers.



An Architectural Style for Data-Driven Systems 21

View Form. View Forms are coarse-grained components with specialized functional-
ities, yet similar architectures. Typically, each View Form is associated with a Data
Source which serves as the source and/or destination of data. Currently, there are five
types of View Forms, corresponding to the five primitive operations on data: Create
Form, Read Form, Update Form, Delete Form, and Search Form. These components are
packed with common services which are usually required in implementing a data-driven
application. For example a Read Form can automatically present the data in an under-
lying Data Source in grid format or itemized format. It can paginate the data rows, and
automatically change the sort order if the end-user clicks on one of the grid columns.
It also allows users to download its data set as a file. A Search Form can present the
end-user with a data entry form for specifying filter criteria and then pass the filters to
an associated Read Form for displaying the search results. A Create Form can automat-
ically validate user input and warn the user if required entries are missing or invalid.
A Delete Form can consult the integrity constraints in the data model to check for va-
lidity of a delete operation before attempting it. All these services are either provided
by default or specified in configuration files at the conceptual level. These services are
realized by collaboration of a number of common finer-grained components in the View
Forms, which are described below.

View Attribute. These fine-grained components correspond to the individual data-
aware “element types” on a View Form. Each View Form has a number of View At-
tributes. Typically, each View Attributes is connected to some Data Attribute from the
View Form’s associated Data Source. The connection between View Attributes and Data
Attributes is established during component initialization. The type of collaboration be-
tween the View Attribute and the Data Attribute depends in part on the containing View
Form. For example, on a Read Form, View Attributes receive the retrieved data from
corresponding Data Attributes, but on a Create Form, View Attributes send user in-
put value to Data Attributes for storage. View Attributes also respond to some specific
Messages. For example, upon receiving a Filter Message, the View Attribute sends a
filter request to its associated Data Attribute, which in turn is routed to its parent Data
Source. Although View Attributes are more concerned with the logic of data operation,
they also carry some presentational semantics based on their types. For instance, on a
Read Form, View Attributes end up appearing as the header of data columns in the data
grid shown to the user.

View Cell. These are fine-grained components which represent the individual data-
aware elements. A View Cell may represent an individual data entry field on a form, or
an individual value in a grid of displayed data. View Cells are not defined in the con-
figuration files. Rather they are produced at run time during the operation of the View
Forms. For example, on a Read Form, for each retrieved data row the View Attributes
instantiate new View Cells. After retrieving all the rows, a grid of View Cells is formed
which is displayed to the end-user. On data entry and manipulation forms, View Cells
are instantiated during component initialization and are represented as individual data
entry fields on the GUI. All View Cells maintain links to the original View Attributes
that instantiated them to pass the messages they receive.



22 R. Mahjourian

View Input. These are fine-grained components which represent the user interface wid-
gets. Every View Cell which represents a data entry input is associated with a View
Input. The type of View Input determines how that View Cell is represented on the user
interface. Example View Inputs are text fields, multi-line text fields, drop down lists,
checkboxes, etc. Since drop downs are heavily used in data-driven applications, they
receive special treatment in the XPage style. By default, any View Attributes linked to a
Foreign Key Data Attribute is represented as a drop down input on the user interface. As
its parameter, the drop down View Input receives the Data Source component matching
the target entity of the foreign key relationship. This enables the drop down input to
display appropriate values from the referenced entity.

View Row Selector. View Row Selectors are fine-grained connectors whose purpose is
to receive special filter requests via Select Messages and relay the filter to their associ-
ated Data Attribute. Any View Form can have a number of Row Selectors in addition to
its View Attributes. The effect of sending a Select Message to a Row Selector is almost
the same as sending a Filter Message to an ordinary View Attribute. They both result
in limiting the data rows which are retrieved, or manipulated. However, the semantic
difference is that Row Selectors are used when the View Form’s operation relies on
receiving the message. For example, an Update Form usually needs to work with an in-
dividual data row and refuses to operate if it does not receive a proper Select Message,
because otherwise it may affect unintended data rows.

View Link. View Links are fine-grained connectors which link different View Pages
in an XPage application. Depending on the containing View Form, a View Link may
appear as a hyperlink taking the user from one page to the other, or as a form submit
button. In either case, each View Link carries a number of Message objects. All commu-
nications between components on different View Pages take place through View Links,
and are routed by the Transroute connector. For example, in a book list page, a View
Link can be placed next to each row to allow the end-user to go to a book update page
to modify that book. In this case, a foreign key value is sent to a target Row Selector in
the book update page.

Figure 3 shows some of the view components and connectors involved in this example.
Notice how the same View Attributes, View Cells, and View Links take different forms
on the two types of View Forms. The View Link appears as a hyperlink on the Read
Form, and as a submit button on the Update Form. When the View Link is on a data
entry form, it also automatically carries the user input as a number of Input Messages.

ViewCell

ViewCellViewAttr:
ViewAttr:

ViewLink
ViewCell

ViewLink

ViewAttr
ViewCell

ViewCell

Book List

ViewAttr

ViewLink
ViewLink

Pa
ge

C
oo

rd
. Book Update

T
ra

ns
ro

ut
e

Messages LoadPage() load

Transition()
Select()

Transition()

R
ow

Se
le

ct
or

Fig. 3. Example view layer interaction



An Architectural Style for Data-Driven Systems 23

View Template. Contrary to what their name suggests, none of the view layer compo-
nents and connectors mentioned so far are concerned with their presentation. Instead,
each visible XPage component or connector is associated with some View Template
component, which is able to “draw” it on the user interface. Standard View Templates
are provided in the XPage framework for all coarse-grained and fine-grained compo-
nents. Developers can customize the presentation of an individual component without
having to provide custom presentations for its contained elements.

3.4 Support Components

Coordinator connectors are responsible for locating and loading other components dur-
ing initialization of the component hierarchy. Based on the type of the requested com-
ponents, Coordinators can decide intelligently whether they can reuse previously loaded
components or not. This is particularly important for sharing Data Adapters for ensur-
ing transactional integrity, as in order to successfully rollback transactions all related
operations on a View Page must be handled by a single Data Adapter. Coordinators can
also facilitate deploying the XPage style in a distributed environment, as they can trans-
parently return stubs for remote components and connectors. Other XPage components
facilitate user authentication, access authorization, navigation, and internationalization.

4 Case Studies

In this section, we briefly discuss some real-world deployments of the XPage style.

4.1 Squash

In [11], Esfahbod et al. use XPage to implement a web-based front-end for configur-
ing an organizational gateway, which gives users controlled access to a set of internally
administered infobases. The front-end allows the end-user to define available infobases
together with a hierarchy of organizational users in different levels and groups. Access
rights can be assigned to individual users or to organizational levels. From the informa-
tion gathered in the database, appropriate configuration files are generated for a squid
web proxy, which acts as the gateway to the actual infobases.

Despite unfamiliarity of this group with the XPage architecture and its framework, it
took their three member team only six person-days to implement Squash. At that time
they used an earlier version of XPage. In that version only the Create Forms offered
drop down View Inputs, and this form of user input was not available in Search Forms.
Since they needed such a feature on their search forms, and they did not want to bother
modifying the XPage framework, they used the extension points as a workaround.
They used a Create Form in place of the Search Form, however they overrode the be-
fore process write extension to cancel the create operation and instead route the user
input messages to the Search Form for being processed as filter criteria.

4.2 BibIS

In 2006, XPage was used to develop a Bibliographic database for the Database Re-
search Group at the Department of Computer Science at University of Florida. The



24 R. Mahjourian

core functionality of BibIS is to manage bibliographic data on publications. It allows
end-users to manage publication types, enter publication information, and optionally
upload article files. In addition to browsing and searching the publications, BiBIS al-
lows users to generate BibTeX entries for any set of selected publications. Up to this
point, the requirements could be satisfied using nothing but default XPage components
and connectors.

However, the interesting requirement in BibIS was that all the publication attributes
and publication types needed to be dynamically definable by the end-user. We used
the extension points to satisfy this requirement. For the publication entity, an “empty”
Data Source was defined with no Data Attributes. In the before load extension point
of this Data Source, we included custom code to load an auxiliary Data Source on
the table containing publication meta-data. The custom code dynamically added Data
Attributes to the publication Data Source to match the stored meta-data. Using this
approach greatly reduced the complexity of this solution, since all other View Forms
which worked with the publication entity were developed as if the publication table
was a static table. Other extension points were used to update the structure of the actual
publication table as the end-users updated the publication meta-data attributes.

4.3 Ringtone Vending Website

Our last case study is from the deployment of XPage on an Internet website for selling
cell phone ringtones and logos. This system worked on three geographically distributed
servers. A catalog server on the content provider’s site offered web services for getting
information on available content for sale. The web server presented the catalog to the
Internet users and accepted orders. Received orders were sent to a GSM server, which
communicated with the content provider to get the ringtone and then send it to end-
user’s cell phone.

Although there is no intrinsic support for web services in XPage, we used the exten-
sion points on two virtual Data Sources to provide the connection from the web server
to the catalog server and the GSM server. The first virtual Data Source made a web ser-
vice request to the catalog server upon a read request to get the catalog information. The
second virtual Data Source was used as if it was saving user orders. However, instead it
activated local scripts which sent order parameters to the remote GSM server.

A common theme that is seen in all the above experiences is an invariable need for
extensibility in the architectural style. All these systems had requirements which were
not predicted when XPage was designed. This confirms the importance of extensibility
as a key requirement for such a generic software engineering solution.

5 Conclusions

We have presented the XPage architectural style for creating data-driven systems.
XPage facilitates reuse at the code level by offering a conceptual domain-specific lan-
guage. However, more importantly, it facilitates reuse at the architectural level by pro-
viding an efficient break down of responsibilities in the generic coarse-grained and



An Architectural Style for Data-Driven Systems 25

fine-grained components. As part of future work, we are looking forward to present-
ing the software engineering challenges that we faced when designing XPage and the
guidelines that we followed to address them.

Our successful experience with XPage shows that it is possible to streamline many
activities involved in design and development of data-driven systems. However, we
believe data-driven systems have much more capacity for reuse and we are looking
forward to seeing more research devoted to discovering techniques and methods for
exploiting this potential.

References

1. Perry, D.E., Wolf, A.L.: Foundation for the study of software architecture. Software Engi-
neering Notes 17(2), 40–52 (1992)

2. Garlan, D., Shaw, M.: An introduction to software architecture. Advances in Software Engi-
neering and Knowledge Engineering 2, 1–39 (1993)

3. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (webml): a modeling language
for designing web sites. In: Proceedings of the 9th international World Wide Web conference,
pp. 137–157 (2000)

4. Ceri, S., Fraternali, P., Matera, M.: Conceptual modeling of data-intensive web applications.
IEEE Internet Computing 6(4), 20–30 (2002)

5. Vigna, S.: Erw: Entities and relationships on the web. In: Poster Proc. of Eleventh Interna-
tional World Wide Web Conference (2002)

6. Vigna, S.: Automatic generation of content management systems from eer-based specifica-
tions. ASE 00, 259 (2003)

7. Chen, P.P.S.S.: The entity-relationship model: Toward a unified view of data. ACM Transac-
tions on Database Systems 1(1), 9–36 (1976)

8. Sun-Microsystems: Enterprise java beans, http://java.sun.com/ejb/
9. Mattmann, C.A., Crichton, D.J., Hughes, J.S., Kelly, S.C., Ramirez, P.M.: Software architec-

ture for large-scale, distributed, data-intensive systems. In: WICSA 2004, p. 255 (2004)
10. Mattmann, C.A., Crichton, D.J., Medvidovic, N., Hughes, S.: A software architecture-based

framework for highly distributed and data intensive scientific applications. In: ICSE 2006,
pp. 721–730 (2006)

11. Esfahbod, B., Safy-Allah, H.: Squash: Design and implementation of a large scale http gate-
way and masqurader. Internet draft (2003),
http://behdad.org/download/Publications/squashdoc/squash.pdf

http://java.sun.com/ejb/
http://behdad.org/download/Publications/squashdoc/squash.pdf


H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 26–38, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Architectural Analysis Approaches: A Component-Based 
System Development Perspective 

Novia Admodisastro and Gerald Kotonya 

Computing Department, Lancaster University,  
Lancaster LA1 4WA, UK 

{admodisa,gerald}@comp.lancs.ac.uk 

Abstract. Component-based system development (CBD) relies on the integra-
tion of existing software components to compose systems. These are often 
black-box components whose functionality and configuration may not match 
the “ideal” system context. Systematic architectural analysis can ensure that 
risks resulting from architectural adaptations and trade-offs do not adversely 
affect critical system qualities (e.g. cost, dependability and system resource 
constraints). The analysis is likely to reveal not only how well an architecture 
satisfies a particular system context, but also how change might affect critical 
system attributes. However, current architectural analysis techniques differ 
widely in their analytical capabilities and support for reuse-driven development 
making it difficult for developers to assess their effectiveness in CBD. This pa-
per proposes an evaluation framework based on the design challenges in CBD 
and uses it to review existing architectural analysis techniques. 

Keywords: Component-Based Systems, Architectural Analysis, System Design. 

1   Introduction 

The importance of architecture in reuse-driven development is widely recognized 
[1,2,3]. Architecture provides a framework for establishing a match between available 
components and the system context. It is a key part of the system documentation; en-
forces the integrity of component composition and provides a basis for managing 
change. However, one of the most difficult problems in component-based system devel-
opment (CBD) is ensuring that the software architecture provides an acceptable match 
with its intended application, business and evolutionary context. Unlike custom devel-
opment where architectural design relies solely on detailed requirements specification 
and where deficiencies in application context can be corrected by ‘tweaking’ the source 
code, in component-based system development the typical unit of development is often 
a blackbox component whose source code is inaccessible to the developer. Getting the 
architecture right is therefore key to ensuring quality in a component-based system.  

Architectural analysis in CBD provides the developer with a means to expose inter-
face mismatches, assess configurations with respect to specific structural and behav-
ioural constraints and to verify the adequacy of compositions with respect to quality 
constraints. Architectural analysis can also provide a basis for developing “what-if” 
scenarios to explore the implications of evolving a system [4,5]. However, current 



 Architectural Analysis Approaches: A CBD Perspective 27 

architectural analysis approaches differ widely with respect to their underlying mod-
els, analytical capabilities and ability to support CBD making it difficult for develop-
ers to ascertain their effectiveness in different application contexts [6,7].  

This paper builds on the survey by Dobrica in 2002 [5], Babar in 2004 [10,11] and 
Kazman in 2005 [12] which focused largely on architectural analysis for custom de-
velopment, to review methods and techniques for reuse-driven development. Our 
objective is two-fold: First, to provide the component-based system designer with a 
practical means of assessing the efficacy of existing architectural analysis techniques 
for CBD, and secondly, to provide the architectural analysis method developer with a 
set of key requirements for CBD. Our assessment framework comprises six necessary 
requirements for an architectural analysis approach in CBD and is derived from the 
design challenges in CBD. 

The rest of this paper is organized as follows; section 2 discusses design challenges 
in CBD and identifies the necessary requirements for architectural analysis approaches. 
Section 3 reviews five existing architectural analysis approaches that support CBD. 
Section 4 provides a discussion of the results and a table summary. Section 5 provides 
some concluding thoughts. 

2   Design Challenges in CBD 

A typical component-based system architecture comprises a set of components that 
have been purposefully designed and structured to ensure that they have “pluggable” 
interfaces and an acceptable match with a defined system context. However, the 
blackbox nature of many software components means there is never a clean match 
between system specifications and concrete software components.  

The Fig. 1 shows how the design process fits into a typical component-based sys-
tem development process [13,16]. The architectural design stage partitions required 
functionality (i.e. services and constraints) into logical components, which can be 
composed using off-the-shelf components and services. The Discovery and verifica-
tion phase is intended to ensure that there is an acceptable match between available 
software components and the system being built. The negotiation and planning phase 
implements the necessary mechanisms for resolving conflicting system attributes and 
sets out the development agenda. In our view, the principle challenge in developing 
component-based systems is to formulate efficient engineering models that can bal-
ance aspects of requirements and business concerns with the assumptions and capa-
bilities embodied in software components. The design challenges in CBD can be 
summarized thus: 

• Component documentation: 3rd party software components are often delivered with 
limited documentation. In addition, the components may have hidden design as-
sumptions. This has serious implications for exception handling and overall system 
quality. The design challenge here is twofold: First, to devise ways to help the sys-
tem developer to formulate appropriate analysis scenarios to understand the extent 
of problem, and secondly to help the developer identify and design appropriate 
safe-guards to minimise unforeseen side effects in the system [2,14]. 



28 N. Admodisastro and G. Kotonya 

• Pluggability. Blackbox components are generally not tailorable or “plug and play”. 
This has implications for the system evolution and its life-cycle planning [4,15]. 
The design challenge here is to provide a cost-efficient means of exposing struc-
tural and behavioural mismatches and ways of developing tailored adapters. 

• Conflicting quality requirements. Service quality constraints vary and conflict 
amongst themselves, and with system constraints. This makes them difficult to 
track and resolve. The challenge for the design process is to provide ways of as-
sessing and addressing the adequacy of logical component configurations with re-
spect to service, business organisation and system constraints [8,16]. Support for 
negotiation in the design process is essential. 

• Evolution. Third party software components are subject to frequent upgrades. This 
often leads to a disparity in customer-vendor evolution cycles and may result in 
unplanned upgrades being forced on the customer. The design challenge here is to 
provide ways to minimise the risks associated with change. System integrators 
need to understand how proposed changes may affect not only the quality of the 
system, but its lifecycle planning [17]. 

 

Development 

Discovery and 
verification 

Negotiation 
and planning 

Requirements specification

Architectural design 

Composition 

Deployment 

M
an

ag
em

en
t 

Verify availability of part 

Verify viability of solution 

Evaluate suitability of part 

Analyse architecture 

Test subsystem assembly 

Define negotiation scenario 

Perform trade-off analysis 

Partition/cluster system services into 
 abstract components 

Establish component interfaces 

Adapt components 

Draw up development plan 

Perform regression testing  

Fig. 1. Component-based system development 

2.1   Necessary Requirements for Architectural Analysis 

We have distilled the design challenges discussed in Section 2 into six key require-
ments that can used to design architectural analysis methods and assess their efficacy 
for CBD. We outline the requirements below: 

1) Pluggability. A pluggable analysis allows the developer to adapt and tailor the 
design process to reflect the system context and to address domain specific needs 
(Fig. 2) [18, 19].  



 Architectural Analysis Approaches: A CBD Perspective 29 

 

Architectural analysis

Architectural design

archanalyse archproposed improvements 

System  requirements
(services+constraints) archagreed  

 

Fig. 2. Pluggable analysis 

Fig. 3 illustrates the alternative embedded analysis. Because of its close binding 
with the design process, embedded analysis often poses problems where evalua-
tion needs to be conducted for specific reasons such as safety analysis. 

 
Architectural design +
Architectural analysis 

archagreed

System  requirements
(services+constraints)

 

Fig. 3. Embedded analysis 

2) Negotiation. Support for negotiation is essential in architectural design and 
analysis. As discussed in Section 2, there is never a clean match between system 
requirements and concrete software components. Different design trade-offs may 
be required in a system architecture to achieve desired quality attributes (Fig. 4). 

 

Fig. 4. Architectural analysis in CBD 

3) Formulating analysis scenarios. Analysis scenarios are essential in helping the 
system developer understand how proposed designs and changes might affect not 
only the quality and operation of system, but also its life-cycle planning 
[10,20,21]. In summary, an analysis scenario should provide: 
• Support for standard/portable descriptions of the system architecture (e.g. 

UML and XML). Rami et al. [22] have highlighted ADLs as potential instru-
ment to support software architecture evaluation. 



30 N. Admodisastro and G. Kotonya 

• Support for augmenting architectural descriptions with specific constraints and 
other information to tailor the analysis to specific questions.  

• Support for quantitative “what if” analysis (static and dynamic) under condi-
tions of uncertainty that allow developers to describe scenarios to assess the 
impact of competing designs.  

4) Assessment. Architectural assessment allows the developer to establish how well a 
proposed system design satisfies its application and business contexts. The result of 
the assessment process contributes towards regression testing, impact analysis and 
traceability activities that may be conducted later in the development process. 
There are several architecture assessment techniques including use-case scenarios, 
conformance to patterns, metrics and organization-specific assessment techniques. 
Use case scenarios provide information on system contexts and logical connections 
[23]. Design patterns and styles can be used to check if architectures and configura-
tions conform to certain structural and behavioural characteristics [24]. Metrics 
provide useful quantitative information related to interface complexity, size, com-
ponent dependency and other measurable system attributes. In summary, an ideal 
assessment technique should reveal: 
• Structural mismatches. Incompatibilities in the data exchanged between com-

ponents and verify architectural adherence to design heuristics and rules.  
• Quality mismatches. Inconsistencies and mismatches between quality attrib-

utes and services and the system context. When we understand desired service 
and system qualities before a system is built, the likelihood of selecting or 
creating the right architecture is improved.  

• Behaviour mismatches. Semantic mismatches between provided and required 
interfaces and defects in dynamic component interaction.  

It is important that assessment techniques support both qualitative and quantita-
tive analysis. Qualitative measurements provide a means for representing quality 
concerns in a subjective evaluation which allows logical reasoning, whilst quan-
titative analysis provides a mechanism to elicit subjective responses from the 
stakeholders that provide empirical and measurable values.  

5) Maturity. Maturity indicates the state of readiness of architectural analysis ap-
proaches to be adopted in an organization. An important metric for measuring ma-
turity is validation results [5,11]. We use a CMM-like [34] approach to categorize 
the maturity as follows: initial (approach has not being validated), repeated (valida-
tion through limited complexity and domains with consistent published results) and 
defined (validation through various complexity and domains with consistent pub-
lished results). 

6) Tool support. Architectural analysis is a complex activity that involves the plan-
ning, analysis, negotiation and assessment of large amounts of interrelated, often 
conflicting information. A tool should provide support for extracting architectural 
definition, storing architectural knowledge, analyzing architectural design deci-
sions, identifying trade-offs and offering alternatives [11,18,25,26]. 

In the next section we use these requirements to assess architectural analysis ap-
proaches intended to support component-based development. 



 Architectural Analysis Approaches: A CBD Perspective 31 

3   Architectural Analysis Approaches 

3.1   ATAM 

The Architecture Trade-off Analysis Method (ATAM) [9] is a pluggable scenario-
based approach. ATAM focuses on multiple quality attributes (currently; modifiabil-
ity, availability, security, and performance). It is aimed at locating and analyzing 
trade-off points for areas of highest risk in the architecture. Attribute-specific ques-
tions generated using scenarios of interest are used to identify possible architectural 
solutions to achieve desired system quality attributes. The analysis process derives 
three architectural decisions (i.e. sensitivity points, trade-off points and risks) that 
have marked effect on one or more quality attributes.  

ATAM requires the participation and mutual cooperation of three groups of stake-
holders: an evaluation team that is external to the project, project decision makers, 
and architecture stakeholders.  

The approach requires the architect to walk through each high-priority attribute-
specific scenario, showing how it affects the architecture (e.g. modifiability) and how 
the architecture responds to it (e.g. for quality attributes such as performance, security 
and availability). Along the way, the evaluation team documents the relevant architec-
tural decisions, and identifies and catalogues their risk, non-risks, sensitivity points 
and trade-off. Sensitivity points are parameters in the architecture to which some 
measurable quality attribute is highly correlated. To find the trade-off, all important 
architectural elements with multiple sensitivities are located. For example the number 
of copies of a database might be a sensitivity point for both availability and perform-
ance. Fig. 5 shows how the ATAM activities are partitioned into four iterative phases. 
ATAM has been extensively evaluated in different application domains including 
embedded [9] and general information systems [1]. 

 

Fig. 5. ATAM activities [9] 

3.2   i* Approach 

REDEPEND-REACT is an architectural analysis tool that supports the i* approach 
which is represented in Strategic Dependency models (SD) [27,28]. i* is an actor 
 



32 N. Admodisastro and G. Kotonya 

modeling language that is used to represent software domains and actors (human, 
organization, hardware or other software). SD describes a network of dependency 
relationships amongst various actors in an organization context. Actors are 
represented by nodes; links between nodes represent dependencies between actors. 
The depending actor is called Depender and the actor who is depended upon is called 
the Dependee. The approach is shown in Fig. 6. 

REDEPEND-REACT provides guidelines for formulating metrics over i* models 
that a developer can use to perform architectural analysis. The metrics are selected with 
respect to properties that are important to the system being modeled (e.g. security, effi-
ciency or accuracy). Metrics are defined in terms of the actors and dependencies in the 
models, and the results of the evaluation are used to inform multiple component selec-
tion. Metric measurement is performed using a MS ExcelTM1 tool which allows the user 
to define additional metrics and to modify actor values interactively. As the values on 
the architectures are formulas based on these values, the results are automatically up-
dated. REDEPEND-REACT has been successfully used to analyse several information 
management system case studies including; a Meeting Scheduler system, an e-Learning 
system and an e-Business system. 

 

Fig. 6. i* architectural analysis process 

3.3   ARGUS-I 

ARGUS-I [29] is a specification-based analysis tool which uses the C2-style archi-
tecture description language [30] and augments it with component behaviour speci-
fication using Statecharts. The ARGUS-I tool performs analysis at component and 
architectural level. Component-level specification analysis allows for static (i.e. 
interface inconsistencies and component-Statechart inconsistencies) and dynamic 
analysis (i.e. enables the execution of component Statecharts). The analysis process 
is shown in Fig. 7. 

Architecture-level specification checks are performed statically by verifying struc-
tural and behavioural dependencies among components, and dynamically by evaluat-
ing architecture configuration through simulation. The analysis capabilities of Argus-I 
have been illustrated using a medium-sized Elevator Control System example. 

                                                           
1 MS Excel is a trademark of the Microsoft Corporation. 



 Architectural Analysis Approaches: A CBD Perspective 33 

 

Fig. 7. ARGUS-I process 

3.4   Odyssey-Adapt 

Odyssey-Adapt is a plug-in for the Odyssey IDE [31] that is intended to support compo-
nent adaptation and composition during development. Most of the analysis is focused on 
the component interface. The approach uses three design patterns (proxy, façade and 
adapter) to tackle component interface mismatches and structural complexity.  

Fig. 8 shows the analysis process. The approach defines two types of dependencies 
between a provided and a required interface; assembly connector and incompatibility 
dependency. An assembly connector dependency represents the actual composition 
between two components through their interfaces. An incompatibility dependency 
shows the relationship between two components that require some kind of adaptation 
before their interface can be composed.  

 

Fig. 8. Odyssey Adapt 

Whenever a provided and a required interface are related, Odyssey-Adapt triggers the 
incompatibility detection function. Three types of incompatibilities are considered:   

1. Structural. These are conflicts related to syntactic problems between a provided 
and required interface. These include interfaces with different names, interfaces 
with methods that differ in their signature, interfaces with different numbers of 
method, and any combination of these three. They are automatically discovered by 
a detection function that compares the specification of the interfaces. 

2. Behavioural. These are semantic mismatches between the provided and required 
interface. This mismatch identification process is the responsibility of the designer, 



34 N. Admodisastro and G. Kotonya 

which means that all conflicts are documented manually in an incompatibilities note 
and tagged with the provided interface.  

3. Hybrid. These are mismatches that occur from combination of structural and be-
havioural incompatibility. This type of mismatch is automatically detected, pro-
vided that the behavioural incompatibility has been previously marked. 

Odyssey-Adapt is a relatively new approach and has not been validated on a sig-
nificant software system. 

3.5   Engineering Framework 

Becker et al. [32] have proposed an adaptation process for detecting and resolving 
component mismatches based on a taxonomy of design patterns. The adaptation proc-
ess is applied during architectural design, whenever an analysis of the system indi-
cates a mismatch between two constituent components. The taxonomy contains five 
distinct classes of component mismatches; technical, signature, protocol, concept and 
quality. These are associated with patterns that may overcome the mismatches. Fig. 9 
shows the five steps in the adaptation process. 

 

Fig. 9. The process of adapting a component 

The Engineering Framework has been partially evaluated using a small case study 
of a water cooling system. 

4   Methods Summary 

The results of the assessment are summarised in Table 1. Briefly, ATAM is a maturing 
approach that is pluggable, supports greybox development and has extensive support for 
trade-off analysis (i.e. components, quality attributes and business concerns). It provides 
good help with formulating analysis scenarios but partial support for augmenting of 
architectural descriptions. However, it provides some support for experimentation. It is 
tool supported, and provides both qualitative and quantitative assessment for static and 
dynamic analysis. 
 



 Architectural Analysis Approaches: A CBD Perspective 35 

,
	
�

�
��
��
�
�
	
�
��
�

�

��
*�
��
�)
��
��
��
��
��
�
��
�

�

�
��
�
��
��
)
�

�

�
!
�
7
8
�
 �

��
�
�
(
2
�
�
9
�

�

(
4
:
0
 (

4
&

4
!
,
�

�
,
�
&

��
�.

��
�
�
�
�
	
�
�
�

�
(
"
0
�
� 
�

2
�

��
�

�

�
�
	
�
��

4
�
$
��

�
��

��
$
�

'
�
	
�

�
�
�
�
5
�

�
�
�

�
�
�
�
�
��
�

�
�
�

�
�&
'
�#
(�

�
�&
'
�#
(�

�
�&
�
)
�(
�

�
�&
�
)
�(
�

�
�&
�
)
�(
�

�

��
�
�

�
9

�
��
�
�

�
�

�
�

�
�

�
�

�
�

�

�

$
$
	
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

$
$
	
�
�

��

�

4
�

�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

"
�
��

	
�
��

��
��
�
��

�$
�
��
	
��
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
;�
�
��
&

	
�
	
$
��

�
�
�

�
�

�
�

�
�

�
�

�
�
�
�
��
��

�<
�

�
�
��
$
�
�
�
�

�
�

�
�

�
�

�
�

�
�

4
�
	

�

	
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�	

5
�
�
�

�

��
�

�
�

�
��

&
	
�
5
�
��
4
=
�
�
�
��

�
�

�
�

�
�

�
�

�
�

:
�
	

�
�

�	
��
��
�
�
��
�

�
�

�
�

�
�

�
�

�
�

�
�
��
�
�
��
��
�
�
��

�
�
��

�
�

�
�

�
�

�
�

�
�

!
�
$
�
��
	
��
�
�
�

,
�	

�
�
��

%%
��
��
�

�	
�
	


��
��

�
�
�

�
�
�
�
�
��

�
�

�
�

�
�

�
�

�
�

�
�
�
�	

�

�
�	
�
	



��
��

�
�

�
�

�
�

�
�

�
�

�
�
�
�
��
��

��
�
��
	
�
$
�

�
�
�	

��
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
%�
�
��

$
�

	
�
	



��
��

��
�
�
	
�
��
��

>
�
	
��
�%
�	
�
	


��
��

�
�

�
�

�
�

�
�

�
�

�
��
�
�
��

�
	

�

�
�

&S
��
�S
�(
�

�
�

&S
�(
�

�
�

&S
��
�S
�"
(�

�
�

&S
�(
�

�
�

&S
�(
�

�
�
�
	
�
��

�
�
	

�

�
��

&S
��
�S
�(
�

�
�

�
�

&S
��
�S
�"
(�

�
�

�
�

&S
�(
�

�
��
�
��
�

�
�
��

:
�
	

�
�

��
��
��
�
�
��
��

�
�

�
�

�
�

�
�

�
�

&
	
��

�
��

�

�
�

�
�

�
�

�
�

�
�

,
�
�

�
��

�
�
�
�
��

�
�

�
�

�
�

�
�

�
�

� � �
� 0
�
�
�
�
��
��
K�
�
�*
�
��
�

�
�H
��
��
��
��
�0
�
�
�
�
��
��
K�
E
��
��
��
��

�

�
��
�
��
0
�
�
�
�
��
��
K�
8
��
��
��

'
�#
T
�'
��
�#
%
�
+
�

�
�
�
�
��
�

�
)
��
T
��
)
��
�%
�
+
�

�
�
�
�
��
�

S
�"
�T
�S
�
�
��
��
��
�
��
�


�



	
�
��

S
�"
�T
�S
�
��
��
��
��
��
�


�



	
�
��



36 N. Admodisastro and G. Kotonya 

The i* approach is a maturing, embedded approach that supports blackbox devel-
opment. The approach provides strong support for negotiation. It also provides exten-
sive help with formulating analysis scenarios and involves three different system 
stakeholders in the analysis. It is tool supported and provides good quantitative as-
sessment for static analysis. It is significantly weak in dynamic analysis. 

ARGUS-I is a new, pluggable approach that supports whitebox development and 
has poor support for negotiation. It provides limited help with formulating analysis 
scenarios. It is tool supported and provides good qualitative and quantitative assess-
ment for static and dynamic analysis.  

Odyssey-Adapt is a relatively new, embedded architectural analysis process for the 
Odyssey development environment. It supports whitebox development but provides 
poor support for negotiation. The analysis is largely structural and limited to compo-
nent interface mismatches. There is no provision in the method for analysing non-
functional properties. Limited support is provided in method for formulating analysis 
scenarios. The resulting assessment is a qualitative report detailing structural, behav-
ioural and hybrid mismatches. 

The Engineering framework is an immature, pluggable process that supports 
blackbox development. Its support for negotiation is limited to quality attributes. The 
framework provides limited support for both static and dynamic aspects of design. 
The resulting assessment is qualitative. In our view, the Engineering framework is 
still at an early stage of development. Its guidelines for component adaptation are 
very generic and it relies heavily on designer experience to achieve there’s consider-
able reliance on designer experience as the steps above indicate. 

5   Conclusions 

Component-based software development is often promoted in literature as a rapid 
low-cost strategy for developing adaptable and extensible software systems. In reality 
the strategy carries significant risk throughout the system life cycle. The risks are 
related to: poor component documentation, the vulnerability risks associated with 
hidden design assumptions in blackbox components, interfaces mismatches and diffi-
culties in mapping critical quality attributes to component architectures. 

In this paper we have shown how architectural analysis can reveal not only how 
well a system satisfies a particular application context. We have also shown how 
systematic architectural analysis can help ensure that risks resulting architectural 
adaptations and trade-offs, and component changes do not adversely affect critical 
system qualities. The contexts in which third party components are used vary greatly. 
This means that the documentation supplied with the components is often incomplete 
or inadequate. Architectural analysis can help ensure that an acceptable solution is 
achieved, and mitigate situations where unforeseen user needs coincide with a com-
ponent’s undocumented design assumptions. 

Unfortunately, current architectural analysis approaches for CBD vary widely with 
respect to their analytical capabilities and support for blackbox development making 
it difficult for developers to assess their efficacy in different application contexts. We 
have developed a CBD-sensitive framework for assessing architectural analysis ap-
proaches for CBD and used it to review five architectural analysis approaches. Our 
results show that there is significant disparity in the analytical capabilities and user 



 Architectural Analysis Approaches: A CBD Perspective 37 

validation of the approaches. Support for key component-based design issues is still 
patchy in most architectural analysis approaches. In particular the support for negotia-
tion and defining analysis scenarios is lacking. While support for blackbox develop-
ment is available in a number of approaches, these are relatively few. The role of 
stakeholder support in architectural analysis is largely left to the software architect. 
Critically, none of the approaches support hybrid reuse-driven development, even 
though, increasingly applications are being developed in which reusable components 
and services co-exist in the same system. 

References  

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. SEI Series in 
Soft. Eng. Addison-Wesley, Reading (2005) 

2. Crnkovic, I., Larsson, M. (eds.): Building Reliable Component-Based Software Systems. 
Artech House Publisher (2002) 

3. Medvidovic, N.: Moving Architectural Description from Under the Technology Lamppost. 
In: Proc. of the Euromicro Conf. on SEAA, pp. 2–3. IEEE Computer Society, Washington 
D.C. (2006) 

4. Kotonya, G., Hutchinson, J.: Managing Change in COTS-Based Systems. In: Proc. of the 
IEEE Int. Conf. on Soft. Maintenance, pp. 69–78. IEEE Computer Society, Washington D.C. 
(2005) 

5. Dobrica, L., Eila, N.: A Survey on Software Architecture Analysis Methods. IEEE Trans. on 
Soft. Eng. 28(7), 638–653 (2002) 

6. Hutchinson, J., Kotonya, G.: Patterns and Component-Oriented System Development. In: 
Proc. of the Euromicro Conf. on SEAA, pp. 126–133. IEEE Computer Society, Washington 
D.C. (2005) 

7. Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L.: Recommended Best Indus-
trial Practice for Software Architectural Evaluation. Tech. Report, CMU/SEI-96-TR-025 
(1997) 

8. Wallnau, K.C.: Volume III: A Technology for Predicable Assembly from Certifiable Com-
ponents. Tech. Report, CMY/SEI-2003-TR-009 (2003) 

9. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The Architec-
tural Tradeoff Analysis Method. In: Proc. of IEEE Int. Conf. on Eng. of Complex Comp. 
Syst., pp. 68–78 (1998) 

10. Babar, M.A., Gorton, I.: Comparison of Scenario-Based Software Architecture Evaluation 
Methods. In: Proc. of the Asia-Pacific Soft. Eng., IEEE Computer Society, Washington D.C. 
(2004) 

11. Babar, M.A., Zhu, L., Jeffery, R.: A Framework for Classifying and Comparing Software 
Architecture Evaluation Methods. In: Proc. of the 2004 Australian Soft. Engi. Conf., pp. 
309–318. IEEE Computer Society, Los Alamitos (2004) 

12. Kazman, R., Bass, L., Lattanze, T., Northrop, L.: A Basic for Analyzing Software Architec-
ture Analysis Methods. J. Soft. Quality 13, 329–355 (2005) 

13. Kotonya, G., Hutchinson, J., Bloin, B.: COMPOSE: A Method for Formulating and Archi-
tecting Component and Service–Oriented Systems. In: Stojanovic, Z., Dahanayake, A. (eds.) 
Service-Oriented Soft. Syst. Eng.: Challenges & Practices. Idea Group Inc. (2004) 

14. Stafford, J., Wolf, A.: Software Architecture. In: Heineman, G.T., Council, W.T. (eds.) 
Component-Based Software Engineering: Putting the Pieces Together. Addison-Wesley, 
Reading (2001) 



38 N. Admodisastro and G. Kotonya 

15. Sommerville, I.: Software Engineering, 8th edn. Addison-Wesley, Reading (2006) 
16. Kotonya, G., Hutchinson, J.: A Service-Oriented Approach for specifying component-based 

systems. In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412, pp. 150–162. 
Springer, Heidelberg (2005) 

17. Kotonya, G., Hutchinson, J.: Analysing the Impact of Change in COTS-Based Systems. In: 
Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412, pp. 212–222. Springer, Heidel-
berg (2005) 

18. Obbink, H., Kruchten, P., Kozaczynski, W., Hilliard, R., Ran, A., Postema, H., Lutz, D., 
Kazman, R., Tracz, W., Kahane, E.: Report on Soft. Arch. Review and Assessment (SARA), 
http://philippe.kruchten.com/architecture/SARAv1.pdf 

19. Klein, M., Kazman, R.: Attribute-Based Architectural Styles. Tech. report, CMU/SEI-99-TR-
22. SEI (1999) 

20. Ekstedt, M., Johnson, P.: Exploring Architectural Analysis Credibility from a Developer Per-
spective. In: Proc. on the Australasian Work. on Soft. and Syst. Arch., Sydney, Australia 
(2002) 

21. Weiss, M.: Patterns and Non-Functional Requirements. Tech. paper. Carleton University 
(2001) 

22. Rami, B., Wolfgang, E.: Evaluating Software Architectures: Development, Stability and 
Evolution. In: Proc. of ACS/IEEE Int. Conf. on Comp. Syst. and App., pp. 47–56. IEEE 
Computer Society Press, Los Alamitos (2003) 

23. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture Process and Organization 
for Business Success. Addison-Wesley, Reading (1997) 

24. Babar, M.A., Gordon, I.: A Tool for Managing Software Architecture Knowledge. In: Proc. 
of the Second Workshop on SHAring and Reusing architectural Knowledge Architecture, 
Rationale, and Design Intent, pp. 11–17. IEEE Computer Society, Los Alamitos (2007) 

25. Kazman, R.: Tool Support for Architecture Analysis and Design. In: Proc. of Int. Conf. on 
Soft. Eng., pp. 94–97. ACM Press, New York (2002) 

26. Bashroush, R., Spence, I, Kilpatrick P, Brown, T.J.: Towards and Automated Evaluation 
Process for Software Architectures. IASTED on Soft. Eng., 418, 182 (2004)  

27. Grau, G., Franch, X., Maiden, N.A.M.: REDEPEND-REACT: an Architecture Analysis 
Tool. In: Proc. IEEE Int. Conf. on Req. Eng., pp. 455–456. IEEE Computer Society, Los 
Alamitos (2005) 

28. The REDEPEND-REACT, http://www.lsi.upc.edu/~GESSI/REDEPEND-REACT/ 
29. Vieira, M.E.R., Dias, M.S., Richardson, D.J.: Analyzing Software Arch. with Argus-I. In: 

Proc. of the Int. Conf. Soft. Eng., pp. 758–761. ACM Press, New York (2000) 
30. Medvidovic, N., Oreizy, P., Robbins, J.E., Taylor, R.N.: Using Object-Oriented Typing To 

Support Architectural Design in the C2 Style. In: Proc. of ACM SIGSOFT 1996. 4th Sympo-
sium on the Foundations of Soft. Eng., pp. 24–32. ACM Press, New York (1996) 

31. Spagnoli, L., Almeida, I., Becker, K., Blois, A.P., Werner, C.: Adaptation and Composition 
within Component Architecture Specification. In: ICSR, vol. 3140, pp. 142–155. Springer, 
Heidelberg (2006) 

32. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: Towards an En-
gineering Approach to Component Adaptation. In: Reussner, R., Stafford, J.A., Szyperski, 
C.A. (eds.) Architecting Systems with Trustworthy Components. LNCS, vol. 3938, pp. 193–
215. Springer, Heidelberg (2006) 

33. Persse, J.R.: Implementing the Capability Maturity Model. Wiley, Chichester (2001) 



Component-Based Abstraction and Refinement�

Juncao Li1, Xiuli Sun2, Fei Xie1, and Xiaoyu Song2

1 Dept. of Computer Science, Portland State University, Portland, OR 97207
2 Dept. of ECE, Portland State University, Portland, OR 97207

Abstract. In this paper, we present a comprehensive approach to model check-
ing component-based systems (including software, hardware, and embedded
systems) through abstraction and refinement. This approach is based on assume-
guarantee compositional reasoning and features two synergistic techniques: (1)
an automatic algorithm to component-based abstraction and (2) a mechanized as-
sistant for abstraction refinement. The key insight to the abstraction algorithm is
that a verified property is a natural abstraction of a component. The abstraction
algorithm automatically determines which component properties can be included
in the abstraction for verifying a system property by determining whether the as-
sumptions of the component properties hold in the context of the system. If the
abstraction fails to establish the system property, the refinement assistant deter-
mines the causes of the failure, e.g., why a component property is not included,
and provides automatic remedies or requests manual remedies. This approach has
been applied in component-based hardware/software co-verification of embedded
systems. Case studies have shown that this approach is very effective in abstract-
ing component-based embedded systems and guiding abstraction refinement.

1 Introduction

A common trend in both hardware and software industries is component-based develop-
ment (CBD): developing systems via assembly of components [1,2]. (In the hardware
industry, CBD is also known as IP-based development [1].) Embedded systems are
also increasingly component-based and include only the necessary hardware and soft-
ware components for their missions, due to their diverse applications and often stringent
physical constraints. CBD introduces compositional structures and standard component
interfaces into systems and promotes reuse of design and development efforts. As veri-
fication becomes increasingly important, it is also desired to reuse verification efforts.

Reuse of verification efforts is further made possible by the increasing practice of
assertion-based verification (ABV) [3]. ABV was initially developed for hardware veri-
fication, however, it is gaining popularity in software verification and embedded system
verification. ABV requires component developers to specify temporal correctness prop-
erties of components as they are developed. Component properties are often specified
in standard property specification languages such as the IEEE Property Specification
Language (PSL) [4], which facilitates reuse of component properties.

� This research was supported by Semiconductor Research Corporation Contract 1356.001 and
National Science Foundation Grant 0720546.

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 39–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



40 J. Li et al.

Model checking [5] is a formal verification method that has great potential in system
verification. It provides exhaustive state space coverages for the systems being verified.
A stumbling block to scalable application of model checking is its intrinsic complex-
ity. The number of possible states and execution paths in a real-world system can be
extremely large, which requires state space reduction. Compositional reasoning [6], as
applied in model checking, is a powerful state space reduction algorithm and accom-
plishes verification of a property on a system by decomposing the system into mod-
ules, checking the module properties locally, and deriving the system property from the
module properties. Compositional system structures introduced by CBD may greatly
simplify application of compositional reasoning in system verification.

To leverage the collective effectiveness of CBD, ABV, model checking, and compo-
sitional reasoning in system verification, the following challenges need to be addressed:

– How to determine which component properties should be considered in deriving
a system-level property? ABV tends to introduce a large number of component
properties. Automation is needed in managing these properties and extracting the
appropriate component properties for verifying a system-level property.

– How to determine which component properties can be used in verifying a system-
level properties? Many properties have enabling assumptions. Automation is
needed in determining whether a component property is enabled, i.e., whether its
assumptions hold in the context of the system.

– How to determine the causes for a compositional reasoning failure, i.e., failure to
derive a system property from component properties that have been established,
and identify remedies for the problems? To address these problems, manual efforts
are sometimes needed. It is desired to reduce the manual efforts when possible.

In this paper, we present a comprehensive approach to model checking component-
based systems (including software, hardware, and embedded systems) through
abstraction and refinement. This approach is based on assume-guarantee compositional
reasoning [7,8,9,10,11,12,13] and features two synergistic techniques: (1) an automatic
algorithm to component-based abstraction and (2) a mechanized assistant for abstrac-
tion refinement. The key insight to the abstraction algorithm is that a verified property
is a natural abstraction of a component. This algorithm automatically determines which
component properties should be considered in constructing the abstraction for verify-
ing a system property by dependency analysis and which component properties can be
included in the abstraction by determining whether the assumptions of these properties
hold in the context of the system. If the abstraction fails to establish the system prop-
erty, the refinement assistant determines the causes of the failure, e.g., why a component
property is not included, and provides automatic remedies or requests manual remedies.

Our approach to component-based abstraction and refinement has been applied in
hardware/software co-verification of embedded systems. Case studies have shown that
this approach is very effective in abstracting component-based embedded systems and
guiding abstraction refinement. In particular, this abstraction and refinement approach
can be applied across the hardware/software boundaries smoothly.

The reminder of this paper is organized as follows. In Section 2, we provide the
background of this work. In Section 3, we introduce the algorithm to component-based
abstraction and the procedure for mechanizing abstraction refinement. In Section 4,



Component-Based Abstraction and Refinement 41

we present application of component-based abstraction and refinement in hardware/
software co-verification and evaluate its effectiveness. In Section 5, we discuss related
work. In Section 6, we conclude this paper and touch on future work.

2 Background

2.1 ω-Automaton Semantics

We adopt the L-process model of ω-automaton semantics, details of which can be found
in [14]. Only the concepts necessary for this paper are given below. For an L-process,
ω, its language, L(ω), is the set of all infinite sequences accepted by ω. For
L-processes, ω1, . . . , ωn, their synchronous parallel composition, ω = ω1 ⊗ . . . ⊗ ωn,
is an L-process and L(ω) = ∩L(ωi), and their Cartesian sum, ω′ = ω1 ⊕ . . . ⊕ ωn, is
also an L-process and L(ω) = ∪L(ωi). The safety closure CL(ω) of an L-process ω is
an L-process whose language is the safety closure of the language of ω, L(CL(ω)) =
cl(L(ω)). In [14], cl(L) is termed as the smallest limit prefix-closed language con-
taining L. Given L-processes ω1 and ω2, ω1 implements ω2 (denoted by ω1 |= ω2) if
L(ω1) ⊆ L(ω2).

Under the ω-automaton semantics, model checking is reduced to checking L-process
language containment. Suppose a system is modeled by the composition ω1 ⊗ . . .⊗ωn

of L-processes, ω1, . . . , ωn, and a property to be checked on the system is modeled
by an L-processes, ω. The property holds on the system if and only if the language of
ω1⊗. . .⊗ωn is contained by the language of ω, L(ω1⊗. . .⊗ωn) ⊆ L(ω). A realization
of the ω-automaton semantics is the S/R language [15]. S/R is the input formal language
of the COSPAN model checker [15], which we utilize in this research.

2.2 Assume-Guarantee Compositional Reasoning

Assume-guarantee compositional reasoning, that each module guarantees certain prop-
erties based on properties of the other modules, was introduced by Chandy and
Misra [7] and Jones [8] for analyzing safety properties. Abadi and Lamport [9], Alur
and Henzinger [10], and McMillan [11] extended it to liveness properties. These ex-
tensions are incomplete, i.e., there exist properties of systems which are true but not
provable using these extensions [12]. Amla, Emerson, Namjoshi, and Trefler proposed
a sound and complete compositional reasoning rule for both safety and liveness prop-
erties [13]. This rule, Rule 1, has been realized in the ω-automaton semantics as shown
below.

Rule 1. For ω-automata P1 and P2 modeling two components of a system, and Q mod-
eling a property of the system, to show that P1 ⊗ P2 |= Q, find ω-automata Q1 and Q2

modeling the component properties such that the following conditions are satisfied.

C0: V i(Q1) ⊆ V i(P1) and Q1 does not block P2, and vice versa for Q2

C1: P1 ⊗ Q2 |= Q1 and P2 ⊗ Q1 |= Q2

C2: Q1 ⊗ Q2 |= Q
C3: Either P1 ⊗ CL(Q) |= (Q ⊕ Q1 ⊕ Q2) or P2 ⊗ CL(Q) |= (Q ⊕ Q1 ⊕ Q2)



42 J. Li et al.

V i(P ) is the set of interface variables of P . A process Q does not block process P
iff (i) any initial state of P can be extended to an initial state of P ⊗ Q, and (ii) for
any reachable state of P ⊗ Q, any transition of P from that state can be extended to a
transition of P ⊗ Q. An additional restriction on P ′s and Q′s, which is not shown in
Rule 1, is that P1 (or Q1, respectively) and P2 (or Q2) modify disjoint sets of variables.

Note that checking Condition C3 is not needed if one of Q1, Q2, and Q is a safety
property since its safety closure is itself. In [16], Rule 1 has also been extended to
support compositional reasoning with components that have shared sub-components.

3 Component-Based Abstraction and Refinement

In this section, we first present a key observation that leads to our component-based
approach to abstraction and refinement: verified properties of a component can serve as
abstractions of the component if their assumptions are satisfied. Then, we introduce our
automatic algorithm that constructs abstractions of a composite component (a system is
a composite component) from verified properties of its sub-components. After that, we
introduce a mechanized assistant to refinement of component-based abstraction.

3.1 Verified Properties as Component Abstractions

Once a property p is verified on a component C, we have C |= p, i.e., all behaviors that
C exhibits are a subset of the behaviors allowed by p, and p is usually structurally less
complex than C. Therefore, verified properties are natural abstractions of components.
In the ω-automaton semantics, this is more appealing since systems, components, prop-
erties, and assumptions are modeled uniformly as ω-automata. In the rest of this paper,
systems, components, properties, and assumptions are all modeled as ω-automata.

However, when verifying component properties, assumptions are often introduced
due to the dependencies of a component to its environment. For instance, if p is verified
on C under a set A(p) of assumptions, we have A(p) ⇒ C |= p. In this case, to utilize
p as the abstraction of C, we must show that A(p) can be satisfied. We introduce the
concept of an enabled component property in a component composition as follows:

Definition 1. Given a composition of components C = C1 ⊗ . . . ⊗ Cn. A property
(p, A(p)) of Ci, 1 ≤ i ≤ n, is enabled in C if and only if C1 ⊗ . . . ⊗ Cn |= A(p).

Checking whether p is enabled by checking C1⊗ . . .⊗Cn |= A(p) is often as expensive
as, if not more expensive than, directly checking C1⊗ . . .⊗Cn |= p. On the other hand,
it is often the case that many other properties of C1, . . . , Cn have already been verified.
Therefore, it is desirable to determine whether (p, A(p)) is enabled, through analyzing
the verified properties of C1, . . . , Cn.

Determining whether a sub-component property is enabled is further complicated by
the fact that there may exist circular dependencies among the sub-component proper-
ties. It must be shown that these circular dependencies do not cause circular reasoning,
before the sub-component properties can be deemed as enabled.

Not all enabled sub-component properties are necessary in verifying a property of
the composition since properties are asserted on certain aspects of a component. There-
fore, we only need to determine whether the sub-component properties related to the



Component-Based Abstraction and Refinement 43

property of the composition are enabled. To ensure all the related sub-component prop-
erties are included, a straightforward approach is to apply cone-of-influence analysis [5]
based on the component interfaces and their connections. This may bring in unnecessary
properties. More accurate dependency analysis are needed to exclude such properties.

Based on the above discussion, we define an abstraction of a component as follows:

Definition 2. Given a component C = C1 ⊗ . . . ⊗ Cn and a property (p, A(p)) to be
verified on C, an abstraction for checking (p, A(p)) is the composition of all verified
properties of C1, . . . , Cn that are related to p by dependency analysis and can be shown
to be enabled through analyzing A(p) and the verified properties of C1, . . . , Cn.

The abstraction is conservative since each enabled property of a sub-component is a
conservative abstraction of the sub-component. Composition of conservative abstrac-
tions is a conservative abstraction due to the language intersection property of
ω-automata. Therefore, if (p, A(p)) holds on the abstraction, it also holds on C.

According to [17], properties can be categorized as safety properties, liveness proper-
ties, and their hybrids. (The same categorization is also applicable to assumptions.) Any
property p can be represented as the intersection of a safety property and a liveness prop-
erty. In the ω-automaton semantics, this is represented as p ≡ CL(p) ∧ (¬CL(p) ∨ p)
where CL(p) is the safety closure [17] of p. In this study, we specify properties and as-
sumptions using the ω-automata assertion templates in [16]. Based on these templates,
it is easy to identify a safety or liveness assertion and decompose a hybrid assertion into
its safety and liveness parts. Being able to identify safety and liveness assertions enables
us to better determine whether circular dependencies among component properties can
cause circular reasoning. We assume that the components and properties involved in
component-based abstraction and refinement meet the restrictions imposed by Rule 1.
Therefore, cycles with safety properties will not cause circular reasoning. We only need
to consider pure liveness property cycles for possible circular reasoning.

3.2 Automatic Component-Based Abstraction

There are two major tasks for the component-based abstraction algorithm: (1) deciding
which sub-component properties should be considered in constructing the abstraction
for a composite component and (2) determining whether these sub-component prop-
erties are enabled. The efficiency and effectiveness of this algorithm lies in whether
unnecessary properties can be excluded from the abstraction and necessary properties
can be shown to be enabled as possible only by analyzing the sub-component properties.

Suppose that C is a composite component with sub-components C1, . . . , Cn. The
interface Ii of Ci is a pair (V I

i , V O
i ) where V I

i is the set of variables Ci imports and
V O

i is the set of variables Ci exports. We assume all V O
i ’s are disjoint. When Ci is

composed with other components, the input variables in V I
i are mapped to the output

variables in V O
i ’s of other components. Pi is a set of properties of Ci that are defined on

Ii and has been verified. Each property in Pi is of the form (pij , A(pij)), 1 ≤ j ≤ mi

and mi is the number of properties in Pi. Our abstraction algorithm constructs the
abstraction for verifying (p, A(p)) on C from the sub-component properties, where
(p, A(p)) is defined on the interface I of C and I is also a pair (V I , V O). To simplify
the presentation of our algorithm, let P = P1∪ . . .∪Pn∪{(true, p), (A(p), ∅)}, i.e., P



44 J. Li et al.

is the set of all sub-component properties with addition of (true, p) and (A(p), ∅) which
are derived from (p, A(p)). (A(p), ∅) is marked as enabled since A(p) are assumptions
on the environment of C. Our automatic abstraction algorithm is shown in Figure 1:

Inputs: P = {(true, {p}), (p1, A(p1)), . . . , (ps, A(ps)), (A(p), ∅)}
where s is the sum of the numbers of properties in P1, . . . , Pn

Outputs: “p holds” or “refinement needed”

Build the property dependency graph G from P ;

foreach node t ∈ G do /* via DFS or BFS */
Find all nodes N in G that t depends on; /* via dependency arcs from t */
if !(P (N) |= A(t)) then /* “!” representing logic negation */

Mark t as DU (directly unsatisfied);
enqueue (Que, t);

endif
endfor

while !empty(Que) do
t = dequeue (Que);
Find all unmarked nodes N in G that depend on t; /* via arcs to t */
foreach t′ in N

Find all unmarked nodes N ′ that t′ depends on; /* via dependency arcs from t′ */
if !(P (N ′) |= A(t′)) then

Mark t′ as IU (indirectly unsatisfied);
enqueue (Que, t′);

endif
endfor

endwhile

if (true, {p}) is marked DU or IU then return “refinement needed”;
else

SCSs = {strong connected subgraphs of unmarked liveness properties};
if !empty(SCSs) then return “refinement needed”;
else return “p holds”;
endif

endif

Fig. 1. Component-Based Abstraction Algorithm

Step 1: Build the property dependency graph G. To determine which sub-component
properties should be considered in abstraction construction, we first construct a depen-
dency graph based on the potential enabling relations among the sub-component prop-
erties. We initiate the graph with a single node (true, p) and expand the graph from
it. For each node (pg, A(pg)) in the graph, which has not been expanded, we first find
all the sub-component properties (ph, A(ph)) based on the direct variable dependen-
cies between A(pg) and ph and then find all the sub-component properties (pk, A(pk))



Component-Based Abstraction and Refinement 45

based on the direct or indirect dependencies between ph and pk through examining
only the property part (but not the assumption part) of each node along the dependency
chain. If any (ph, A(ph)) or (pk, A(pk)) is not in the graph, include it in the graph, add
a directed arc from (pg, A(pg)) to it, and put it in the queue for nodes to be expanded;
otherwise, just add the arc.

Optimization based on ω-automata assertion templates. The above approach to building
the property dependency graph may involve a lot of unnecessary component properties
since it only considers variable dependencies. This may lead to significant overhead
in abstraction construction and refinement. We optimize this approach using heuristics
based on the semantic meanings of the ω-automata assertion templates in [16].

Example. Consider a system S with two components C1 and C2. C1 outputs a variable
a and inputs a variable b. C2 outputs two variables b and c and inputs a variable a. The
properties of C1 and C2 are shown in Figure 2. (Note that all assertions in a set, e.g.,
A12, are conjunctive.) A system property to be verified is p: Repeatedly(c) with no
assumption. The property dependency graph constructed for verifying p is in Figure 2.

Property of C1:
p11: After (a) Never (a) UnlessAfter (b);
A11: {Never (b) UnlessAfter (a);

After (b) Never (b) UnlessAfter (a);}

p12: Repeatedly (a);
A12: {After (a) Eventually (b);

Never (b) UnlessAfter (a);
After (b) Never (b) UnlessAfter (a)};

Properties of C2:
p21: Never (b) UnlessAfter (a);

After (b) Never (b) UnlessAfter (a);
A21: {After (a) Never (a) UnlessAfter (b);}

p22: After (a) Eventually (b);
A22: {After (a) Never (a) UnlessAfter (b);}

p23: Repeatedly (c);
A23: {Repeatedly (a);

After (a) Never (a) UnlessAfter (b);}

p

p12

p11 p21

p22

p23

Fig. 2. Component Properties and Property Dependency Graph

Step 2: Determine enabled properties optimistically. After the dependency graph is
constructed, we determine, in an optimistic way, whether a sub-component property in
the graph is enabled. It is optimistic since we assume, at this point, that dependency
cycles do not cause circular reasoning. We will deal with these cycles in the next step.

We first conduct a breadth-first or depth-first search on the graph. For each node
t in the graph, we find the set N of all nodes to which t has dependency arcs. We
check P (N) |= A(t), i.e., whether the property assertions from all the nodes in N can
conjunctively satisfy the assumption assertions in A(t). If no, we mark t as “directly
unsatisfied”, i.e., even if all the nodes in N are enabled, t will still not be enabled.

Starting from the set of nodes marked as “directly unsatisfied”, we recursively iden-
tify nodes that are unsatisfied due to their dependencies to nodes that have been marked



46 J. Li et al.

as unsatisfied. That an unmarked node t′ has a dependency arc to an unsatisfied node t
does not imply that t′ is unsatisfied. We still need to check if the unmarked nodes which
t′ depends on can satisfy t′. This process terminates when there are no more unsatisfied
properties to mark (assuming that dependency cycles do not cause circular reasoning).
The unsatisfied nodes identified in this phase are marked “indirectly unsatisfied”.

If (true, p) is marked as unsatisfied, directly or indirectly, the abstraction algorithm
returns and requests refinement; otherwise, the algorithm moves on to Step 3.

Step 3: Detect liveness circular dependencies. In this step, we detect the existence
of circular dependencies among the unmarked liveness sub-component properties in
the graph G. The circular dependency detection is by finding the strongly connected
sub-graphs of the unmarked liveness sub-component properties. If there exist such sub-
graphs in G, the abstraction algorithm returns and requests refinement.

Remarks: The component-based abstraction constructed by our algorithm includes all
the sub-component properties which (true, p) depends on and are identified as enabled.
In this algorithm, we determine whether a node t can be satisfied by the nodes in N ,
by applying model checking, specifically, applying COSPAN with P (N) as the system
and A(t) as the property to be checked. The complexity of such a check depends on the
property and assumption assertions involved. Since we specify these assertions using
the templates in [16], each assertion is simple and has only a few states. Therefore, the
number of assertions is the deciding factor. The overall complexity of our algorithm
also depends on the number of calls to COSPAN. The number of calls to COSPAN is,
in the worst case, the sum of the number of nodes and the number of arcs in G. Other
complexities of this algorithm include that of building the property dependency graph
and that of detecting strongly connected sub-graphs of unmarked liveness properties.

3.3 Mechanized Abstraction Refinement

Our abstraction algorithm may fail to verify a property (p, A(p)) for the following two
reasons: (1) the sub-component properties are insufficient to verify (p, A(p)) and (2)
there exist liveness property dependency cycles that, before being validated to be free of
circular reasoning, preclude inclusion of the involved sub-component properties in the
abstraction. Below, we present our mechanized approaches to addressing the problems.

Insufficient sub-component properties. When our abstraction algorithm reports that
it fails to establish (p, A(p)) due to insufficient sub-component properties, our refine-
ment assistant conducts a breadth-first search through the dependency graph generated
by the abstraction algorithm to identify all nodes that are marked “directly unsatis-
fied” and reachable from (p, A(p)) through only nodes marked “indirectly unsatisfied”.
For each such node, the assistant outputs the node, the nodes it depends on, and the
error trace of the COSPAN call on this node. The user is asked to modify existing sub-
component properties and introduce new sub-component properties. These modified or
new sub-components properties need to be verified. If a sub-component is a primitive
component, its modified or new properties are directly checked on the component; oth-
erwise, the properties are checked again through component-based abstraction.

Liveness property circular dependencies. When our abstraction algorithm reports
liveness property circular dependencies, our refinement assistant provides to the user



Component-Based Abstraction and Refinement 47

all strongly connected sub-graphs of unmarked liveness properties. An automatic rem-
edy the assistant can provide is to check the additional conditions (such as C3 in Rule 1)
dictated by the rules in Sec 2.2, which, if established, can prevent circular reasoning.
These conditions are essentially additional properties to be checked on the involved
sub-components. If a sub-component is primitive, its additional property can be checked
directly; otherwise, component-based abstraction is recursively applied. If these rules
fail, the user needs to manually validate that the sub-graphs be free of circular reasoning
using techniques such as temporal induction [11], modify the existing sub-component
properties, or introduce new sub-component properties. (Note that modification of ex-
isting properties and introduction of new properties may lead to new circular dependen-
cies.) If all sub-graphs are shown to be free of circular reasoning, (p, A(p)) holds.

Remarks: The abstraction/refinement loop terminates when (p, A(p)) is verified or the
user aborts this loop. The user aborts this loop when an error is found or she has dif-
ficulty in modifying or introducing sub-component properties for verifying (p, A(p)).
Errors in component composition are detected through the user examining the unsat-
isfied nodes in the dependency graph. Errors in sub-components are detected when
verification of sub-component properties fails.

4 Application in Hardware/Software Co-verification

An Illustrative Example. We illustrate component-based abstraction and refinement
with its application in hardware/software (HW/SW) co-verification of a sensor system
as shown in Figure 3. Its software is partitioned into two components: software sensor
(S-SEN) and software network (S-NET) and its hardware is partitioned into three com-
ponents: hardware clock (H-CLK), hardware sensor (H-SEN), and hardware network
(H-NET). The software components are specified in xUML [18] while the hardware
components are specified in Verilog [19]. The software and hardware components are
connected by bridge components (B-SEN and B-NET), which interact with the soft-
ware components following the software semantics and with the hardware components

S_R
et

Legend:

Software Message

Hardware Signal

Component

start

stop

intr_c

dout

reset

system clock

8 8
din

C
_Intr

C
_R

et

A
_Intr

A
_R

et

S_Schd

Clock
Hardware Hardware

Sensor
Hardware
Network

intr_n

d_rdy

intr_s

start_s

OP_Ack (Data_Ack)

Data (Output)

Software Network

N
_Schd

N
_R

et

R
_Intr

R
_R

et

Software Sensor

Bridge Sensor Bridge Network

Fig. 3. Architecture of a sensor instance with software in xUML and hardware in Verilog



48 J. Li et al.

Repeated (H-NET.flag = true); Repeated (H-NET.flag = false);

Fig. 4. Repeated transmission property

/* Properties of S-SEN */
PSS(1) → {PSN (1)}
PSS(2) → {PBS(1)}
PSS(3) → {PSN (4), PSN (1), PBS(1)}
PSS(4) → {PSN (4), PSN (1), PBS(3), PBS(2), PBS(1)}

/* Properties of S-NET */
PSN (1) → {PSS(1)}
PSN (2) → {PSN (1), PSS(1), PBN (1)}
PSN (3) → {PSN (1), PSS(1), PBN (1)}
PSN (4) → {PSN (1), PSS(1), PBN (1)}
PSN (5) → {PSN (1), PSS(4), PSS(1), PBN (2), PBN (1)}

/* Properties of B-SEN and B-NET */
PBS(1) → {PSS(2), PHS(1)}
PBS(2) → {PSS(3), PSS(2), PHS(2), PHS(1)}
PBS(3) → {PSS(3), PSS(2), PHC(1), PHS(2), PHS(1)}
PBN (1) → {PSN (2), PHN (1)}
PBN (2) → {PSN (3), PSN (2), PHN (2), PHN (1)}
PBN (3) → {PSN (5), PSN (3), PSN (2), PHN (2), PHN (1)}

/* Properties of H-NET */
PHN (3) → {PBN (3)}

Fig. 5. Dependencies among component properties

following the hardware semantics and propagate events such as software messages and
hardware interrupts across the HW/SW boundary. A property to verify on this system
is shown in Figure 4. This property asserts that the sensor system transmits on the net-
work repeatedly. Repeated setting and clearing of a flag in H NET indicates repeated
transmission. (Space limitation precludes presentation of the component properties).

We apply component-based abstraction to verify the system property. The abstrac-
tion algorithm constructs an assume-guarantee dependency graph as shown in Figure 5.
The abstraction algorithm is able to enable each property optimistically by ignoring
dependency cycles. In this graph, there are only dependency cycles involving safety
properties, there is no need to check for additional conditions and all these properties
hold and they enable all other properties that depend on them. All the involved proper-
ties form the abstraction on which the system property is successfully verified.

To evaluate the effectiveness of our refinement assistant, we intentionally omit the
properties PBN (3) and PBS(3) and their assumptions since these are properties of the
bridge components that cannot be automatically generated from their designs. We then
apply abstraction and refinement. The assistant reports that the property PHN (3) is not
enabled since one of its assumptions is not satisfied due to the omission of PBN (3).
When PBN (3) and its assumptions are introduced, the assistant then reports that the
property PSS(4) is not enabled since one of its assumptions is not satisfied due to the
omission of PBS(3). The key here is that the user is only notified when manual remedies
are necessary. This refinement assistant is effective in locating unsatisfied assumptions
and reports them to the user as hints for further property modification and introduction.



Component-Based Abstraction and Refinement 49

Table 1. Time and memory usage comparison

Usages Basic Multi Encrypting
TBCV Time (Sec) 31272.8 - -
TBCV Memory (MB) 1660.62 Out of memory Out of memory

Manual CBCV Time (Sec) 41.89 10.34 0.77
Manual CBCV Memory (MB) 9.11 6.05 3.57
Manual CBCV # of COSPAN Calls 8 2 4

Automatic CBCV Time (Sec) 205.93 10.45 12.97
Automatic CBCV Memory (MB) 27.57 4.44 3.54
Automatic CBCV # of COSPAN Calls 39 24 39

Experimental Results. Table 1 shows statistics from verification of the property in
Figure 4 on three sensor systems of increasing complexity using three different ap-
proaches. The “Basic” system refers to the system discussed above. The “Multi” system
and the “Encrypting” system are more complex than the “Basic” system. (See [20] for
details of these systems.) TBCV denotes translation-based co-verification [21] which
translates an entire system into S/R and then verifies the entire system with COSPAN.
In the manual component-based co-verification (CBCV) approach [20], the component-
based abstraction of a system is manually constructed. (Manually created abstractions
serve as guidance in optimizing our automatic algorithm.) In the automatic CBCV ap-
proach, our automatic abstraction algorithm is applied to construct the abstraction. The
time (or memory, respectively) usage of verifying a system using CBCV is the sum
(or max) of the time (or memory) usages of verifying the new components and the
abstraction. The component properties are verified by translating the properties and
the corresponding components into S/R and applying COSPAN. (Translation of hard-
ware components in Verilog utilizes FormalCheck [22] while translation of software
components in xUML and bridge components utilizes ObjectCheck [23].) It can be ob-
served that the time and memory usages of automatic CBCV are order-of-magnitude
smaller than those of TBCV in verifying the first system and TBCV fails to verify the
other systems due to out-of-memory while automatic CBCV finishes the verification
using little time and memory (which include those for graph construction and strongly
connected sub-graph detection). Although automatic CBCV uses more time and mem-
ory than manual CBCV, it is automatic and requires no manual effort in abstraction
construction.

5 Related Work

Our approach builds on and extends compositional reasoning [6], in particular,
assume-guarantee compositional reasoning [7,8,9,10,11,12,13]. It combines assume-
guarantee compositional reasoning with abstraction/refinement [14] by utilizing
component properties as abstractions. It integrates compositional reasoning and ab-
straction/refinement with component-based development and leverages assertion-based
verification to address the component property formulation problem in application of
compositional reasoning.

Abstraction techniques [5,14], as applied in model checking, reduce a system to a
less complex system while preserving correctness of the property to be checked. Major



50 J. Li et al.

approaches to abstraction that have been practically useful include (but are not lim-
ited to) localization reduction [14], data abstraction [5], and predicate abstraction [24].
In [11], McMillan integrated data abstraction, assume-guarantee compositional reason-
ing, and theorem proving techniques in the context of the Cadence SMV system [11].
Our approach, although more restricted compared to McMillan’s approach, is more
lightweight and is more closely integrated with component-based development.

6 Conclusions and Future Work

In this paper, we have presented a comprehensive approach to component-based ab-
straction and refinement. This approach is generally applicable although our imple-
mentation is based on the ω-automaton semantics and the COSPAN model checker,
since its foundation is compositional reasoning. It advances compositional reasoning
via integration with component-based development and assertion-based verification.

The accuracy and efficiency of our abstraction algorithm and refinement assistant
is affected significantly by the dependency graphs that are constructed over component
properties. The dependency graphs are conservative in that they do not omit any true de-
pendency. However, there may be false dependencies introduced by dependency analy-
sis. False dependencies may prevent the abstraction algorithm from including properties
that should have been included in an abstraction and may also prevent the refinement
assistant from providing an accurate description of the causes for a compositional rea-
soning failure. We will research better methods for removing false dependencies.

References

1. Jacome, M.F., Peixoto, H.P.: A survey of digital design reuse. IEEE Design and Test of
Computers 18(3) (2001)

2. Szyperski, C.: Component Software - Beyond Object-Oriented Programming. Addison-
Wesley, Reading (2002)

3. Maliniak, D.: Assertion-based verification smooths the road to IP reuse. Electronic Design
(September 2002)

4. IEEE: IEEE Property Specification Language (PSL) (IEEE Std 1850-2005). IEEE (2005)
5. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge (1999)
6. de Roever, W.P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers,

J.: Concurrency Verification: Introduction to Compositional and Non-compositional Proof
Methods. Cambridge University Press, Cambridge (2001)

7. Chandy, K.M., Misra, J.: Proofs of networks of processes. IEEE Transaction on Software
Engineering 7(4) (1981)

8. Jones, C.B.: Development methods for computer programs including a notion of interference.
PhD thesis, Oxford University (1981)

9. Abadi, M., Lamport, L.: Conjoining specifications. TOPLAS 17(3) (1995)
10. Alur, R., Henzinger, T.: Reactive modules. FMSD 15(1) (1999)
11. McMillan, K.L.: A methodology for hardware verification using compositional model check-

ing. Cadence Design Systems Technical Reports (1999)
12. Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning. In: Emerson,

E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)



Component-Based Abstraction and Refinement 51

13. Amla, N., Emerson, E.A., Namjoshi, K.S., Trefler, R.: Assume-guarantee based composi-
tional reasoning for synchronous timing diagrams. In: Margaria, T., Yi, W. (eds.) ETAPS
2001 and TACAS 2001. LNCS, vol. 2031. Springer, Heidelberg (2001)

14. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, Princeton (1994)

15. Hardin, R.H., Har’El, Z., Kurshan., R.P.: COSPAN. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102. Springer, Heidelberg (1996)

16. Xie, F., Yang, G., Song, X.: Compositional reasoning for hardware/software co-verification.
In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218. Springer, Heidelberg (2006)

17. Alpern, B., Schneider, F.: Defining liveness. Information Processing Letters 21(4) (1985)
18. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Architecture.

Addison-Wesley, Reading (2002)
19. IEEE: IEEE Standard for Verilog (IEEE Std 1364-2005). IEEE (2005)
20. Xie, F., Yang, G., Song, X.: Component-based hardware/software co-verification. In: Proc.

of MEMOCODE (2006)
21. Xie, F., Song, X., Chung, H., Nandi, R.: Translation-based co-verification. In: Proc. of MEM-

OCODE (2005)
22. Kurshan, R.P.: FormalCheck User Manual. Cadence (1998)
23. Xie, F., Levin, V., Browne, J.C.: Objectcheck: A model checking tool for executable object-

oriented software system designs. In: Kutsche, R.-D., Weber, H. (eds.) ETAPS 2002 and
FASE 2002. LNCS, vol. 2306. Springer, Heidelberg (2002)

24. Graf, S., Saı̈di, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)



High Confidence Subsystem Modelling for Reuse

Birgit Penzenstadler and Dagmar Koss

Technische Universität München, Software & Systems Engineering
penzenst@in.tum.de, koss@in.tum.de

Abstract. Reuse of high confidence subsystems depends on their appro-
priate modelling and documentation. This paper discusses the different
aspects that have to be considered when modelling a system and its
subsystems. We propose a concrete artefact model for integrated reuse
from requirements to technical architecture, which satisfies documenta-
tion demands with respect to functionality and the context assumed by
the subsystem. Based on the artefact model, we describe the steps for
conformity and compatibility checking at the development stage of sub-
system integration and/or reuse.1

Keywords: Subsystem, artefact, reuse, conformity, compatibility.

1 Motivation

“How do we achieve reuse of high confidence software in large systems?” An
answer to this question first requires an answer to the question “How do we
build high confidence software?” To classify a software as deserving the predi-
cate “high confidence”, it has to be well-understood, predictable, and reliable:
Well-understood requires a well documented requirements engineering and sys-
tem’s design, supported by a continuous modelling of the system. Predictability
necessitates proper modelling with different, but consistent, interrelated views on
the system to prevent modelling errors or architectural mismatches proactively.
Reliability needs validation and verification of the modelled system.

Additionally, returning to the first question, we want the software to be reusable
within large systems. Reuse is, inter alia, performed to reduce development costs.
However, inappropriate or incomplete documentation sabotages this goal by in-
creasing the effort for the (re)integration of an existing subsystem. Therefore it
has to encompass clearly delimited and well documented subsystem borders.

We define a subsystem border as the interface of a subsystem plus the
relevant surrounding context from the operational environment, the business
domain, and organizational issues. To be able to model and document the sub-
systems in such a way, we need an adequate system requirements artefact model.
A corresponding subsystem model with its artefacts and explicitly modelled sub-
system border information allows the developer to extract such a subsystem,
1 This work was partially funded by the German Federal Ministry of Education and

Research (BMBF) in the framework of the REMsES project. The responsibility for
this article lies with the authors.

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 52–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



High Confidence Subsystem Modelling for Reuse 53

including its documenting artefacts, and reuse it independent from the former
environment within a new surrounding system.

Contribution: We present an approach for the explicit modelling of subsystem
borders (interface plus context), thereby facilitating communication with sub-
contractors and reuse. We start with requirements engineering, go on to system’s
design and end with system (re-)integration. We present an artefact model, then
discuss aspects of modelling subsystems for reuse, and propose concrete subsys-
tem artefacts and explicit modelling of information about the subsystem borders.
Finally we validate conformity and verify compatibility when reusing a subsys-
tem. Our approach is useful for the development of high confidence COTS as well
as all other types of high confidence software as soon as the system is complex
enough to require decomposition into subsystems.

Related Work: There are some approaches that co-develop requirements and
architecture, e.g. [23], and two that derive architecture from requirements, one
for multi-agent systems [2] and an aspect-oriented method [21], but none that
documents refinements of contextual issues within the subsystem.

Other work focuses on architecture design [26] and on the modelling of soft-
ware libraries [12]. Close to the idea of software libraries is also software cartog-
raphy [17], but without explicit consideration of compatibility and reuse. The
composability and compatibility of services on the basis of components is dis-
cussed by [7] and [1].

Although the last ICSR [20] was concerned with COTS (components off-the-
shelf), there was no work presented on either the representation of COTS borders
with regard to ease reuse or concerning validation of conformity and verification
of compatibility. The FLP component model [19] enhances systematic reuse by
considering non-technical issues. However, there is no approach yet that explic-
itly models the borders of a subsystem.

Related work in terms of being able to make use of our ideas are the approaches
to selecting adequate components for reuse, for example [18], who propose a
systematic process for decision support in evaluating and ranking components,
or [4], who focus on piecewise evaluation during component selection.

Outline: After introducing our background in Sec. 2, we start with our system
requirements artefact model in Sec. 3 and explain subsystem border information
documentation in Sec. 3.2. Then we give an example in Sec. 3.3 and present our
steps for reuse in Sec. 4, before concluding with future work in Sec. 5.

2 Foundations

We follow an integrated approach of requirements engineering (RE) and sys-
tem’s design that develops a first sketch of the design during RE. This is based
on an artefact-oriented requirements engineering reference model and a system
architecture model with three abstraction layers.



54 B. Penzenstadler and D. Koss

The Requirements Engineering Reference Model. (REM [11]) classifies
the artefacts of the individual requirements engineering process into three con-
tent categories and assigns documents for them building an integrated view by
the use of quality gates (not further discussed here). The general business needs
(later on referred to as context) incorporate general business objectives, return-
on-investment analysis, high level system vision given by the stakeholder, and
so on. The requirements specification includes the domain analysis, the func-
tional analysis, and quality requirements and their dependencies. The system
concept (later on referred to as design) comprises a detailed functional system
concept and the system test criteria. This point of view is gained from industrial
best practices while its content also includes aspects known from process driven
frameworks and templates (e.g. using the Volere requirements specification tem-
plates [25] and the IEEE 830-1998 standard [13]).

Our System Architecture Model is based on the following three abstraction
layers: the usage layer gives a specification of the system behaviour as it is
perceived at the system border by the user (black box). It is represented as a
hierarchy of services, which give a formal specification of parts of the system’s
behaviour, and lateral relationships between them. Next, the logical architecture
is a realization of the services from the usage model defined in the layer above. It
is modelled as a net of communicating (logical) components and can simulate the
system’s behaviour. Usually, there is an n : m-relationship between the services
of the usage layer and the components of the logical architecture. The third layer,
the technical architecture, comprises a software and a hardware view, linked via
the deployment description. The software is modelled in tasks that are structured
in clusters and those are mapped to the hardware units. The system architecture
model is explained in detail in [6].

3 Artefact Model

According to [24] the quality criteria for requirements are, inter alia, to be com-
plete, consistent, unambiguous, and traceable. These criteria are decideable and
can be evaluated. Further discussion of that aspect is out of scope for this paper,
instead we assume the requirements to have sufficient quality so we can concen-
trate on their appropriate documentation within the system’s artefact model.

3.1 General System Artefact Model

We use the system artefact model depicted in Fig. 1. It features the three content
categories context, requirements, and design, and orthogonally the three abstrac-
tion layers usage, logical architecture, and technical architecture. The mapping
of artefacts to content category and abstraction layer is not always unique, but
we have placed them according to their main focus. Some of the artefacts may
appear refined on lower abstraction layers with an increased degree of detail.

The context artefacts are - ordered according to a decreasing level of abstrac-
tion - a domain model, the business context, the stakeholder context with a
listing and the characteristics for each of them, an operational context includ-



High Confidence Subsystem Modelling for Reuse 55

Fig. 1. Artefact model

ing a listing and characteristic of each external actor, an input/output list, and
technical constraints. The business context can be further detailed into system
vision, business goals, quality goals, and normative constraints.

The requirements artefacts are system goals, use cases and scenarios, func-
tional requirements, and quality requirements. The functional requirements can
be modelled as behavioural, functional, or data requirements according to the
appropriateness for the system’s design.

The design artefacts are interface, interaction, behaviour, and data specifica-
tions and a system’s function net. The latter provides an intuitive functional
overview of the system by depicting the interplay between the functions in form



56 B. Penzenstadler and D. Koss

of a graph, but these details that are not relevant for this paper. The design
artefacts will be refined on the lower abstraction layers.

The Subsystems. We are focusing on are modelled on the logical architecture
layer. To enable a separate treatment of subsystems, there is an artefact called sub-
system border specification. The explicit modelling and documentation of this arte-
fact is crucial to enable integration or extraction and reuse of a subsystem. For that
purpose we extract the subsystem model and complete it with the corresponding
information required to document its borders as we detail in Sec. 3.3.

Due to limitations of space, we assume for the following that the system
decomposition has been decided. The influencing criteria for this decision are
discussed in [22].

3.2 Subsystem Borders

Garlan et al. have discussed, that architectural mismatch stems from mismatched
assumptions a reusable part makes about the system structure it is to be part of.
They blame this problem on conflicts of these assumptions with the assumptions
of other parts, which are almost always implicit, thus they are extremely difficult
to analyze before building the system [10].

Therefore the appropriate modelling of the subsystem borders is crucial to
avoid mismatches when integrating the subsystem into a (new) surrounding sys-
tem. The guiding question regarding the artefact model is:

“What information can we use and what do we have to add?”

For the information that is already present, we have to decide whether the given
form is already appropriate, or if we have to adapt a different form to avoid
dragging along too much information.

Before reasoning on the representation of the (sub)system borders, we have to
be aware of the information that is necessary to document them for appropriate
retrieval when searching for solutions by reuse during development: the interface
and any corresponding constraints. As we are aware of the challenges which the
idea of software libraries bring with them, we do not attempt to solve all their prob-
lems, but instead focus on the adequate documentation of subsystems. The latter
includes a clear description of the functionality offered by the system and the func-
tionality it requires from other system parts to perform at its optimum.

The constraints can roughly be divided into hardware and software constraints
and then categorized as static or dynamic [15]. There is a great diversity of
electrical and mechanical hardware constraints, but in this paper we consider
only the ones that are related to software requirements.

The interface specification can be divided into a static (syntactic) and a dy-
namic (behavioural) part. The differentiation between static and dynamic spec-
ifications is cost-efficient, as verification of static specification usually requires
less effort. So if the static specifications of the corresponding interfaces are com-
patible, the dynamic specifications are evaluated. A static interface specification
includes:



High Confidence Subsystem Modelling for Reuse 57

Functions name, header

Parameters names and corresponding values (variable or ob-
ject)

Data types e.g. integers, strings, objects, . . .

Type representation e.g. volt, an email address,. . .

Value ranges valid range for parameter

Stepping maximum degree of increase or decrease

Pre-/postcond., invariants e.g. voltage greater than zero

Communication protocol and order of sent & received information

In the static specification there are some issues that, at a certain stage of
development, could not be solved yet. For this reason, conditions and invariants
have to appear in both listings, as some of them can be verified statically, but
others only during runtime. The dynamic specification has to hold all information
that can only be tested at runtime or (maybe) in a model simulation. Dynamic
aspects, where compatibility has to be determined, are:

Message order correct causal order as expected by receiver, in-
cluding protocol communication messages

Message timing e.g. message arrival within a certain time slot

Pre-/postcond., invariants e.g. temporal logic formulae like always(b < c)

Ranges conformance to limits

Stepping conformance to min./max. in-/decrease

The constraints usually affect a greater part of the system or even the whole
system, while the interface specifications described above normally apply only
to the interfaces of components inside a system. Nevertheless, these constraints
have to be refined for the subsystem and documented accordingly to have the
complete relevant information available within the subsystem documentation.
The constraints can also be categorized into static and dynamic parts and are
imposed by the surrounding environment. The static constraints are for example:

Rules of conformity e.g. standards, laws or business rules

Quality requirements e.g. response time of database less than 20 seconds

Variability optional parts within the subsystem

Note that laws or standards are to be considered as static in the sense of
checking the conformity of the system to constraints they imply, because the
internal system state at runtime does not take influence on whether the system
is conform to a certain law or standard. However, on the other hand normative
constraints do sometimes change during system development. This has to be
taken care of by requirements evolution and change management, but the issue
is independent from the here presented concerns about conformity. The dynamic
constraints affect the whole system and can only be evaluated at runtime:

Ressources the required processing speed, required memory
space

Realtime conditions overall response time of the system, system speed

Reliability for example Mean Time To Failure



58 B. Penzenstadler and D. Koss

All of the listed information should ideally already be present in the artefact
model defined above. This would reduce the task to extracting the information
using the appropriate filter and feeding it into a template that features fields
for the interface and the constraints listed above. We are aware that this is the
theory while, in practise, it will be necessary to actively accumulate the required
knowledge from different sources of information.

3.3 Subsystem Border Artefacts

The first idea of how the border modelling for subsytems should be documented
is depicted in Fig. 2.

Fig. 2. Subsystem Border
Modelling

Functionality: For the functionality of the sub-
system we extract part of the system model with
explicit interface documentation. To describe the
general purpose of the subsystem, we use a textual
form with a short version of a system vision. This
can be seen as kind of “abstract” of the subsystem
that shall give a concrete idea of what the system
is built for and what functionality it offers. The ex-
plicit interface documentation already reflects the
realization, as it lists the services provided by the
subsystem (also known as export interface [5]) and
the services required from other subsystems by the
subsystem (also import interface).

Conformity Issues: These encapsulate contextual
issues like laws, business rules, stakeholders, and op-
erational environment. With regard to the three ab-
straction layers (Fig. 1) we can picture most of the
content as imposed from “above”, to say from the
business needs and the context of the usage layer.

In detail, the business context contains nor-
mative, company-specific, and system-specific con-
straints. Normative constraints are implications
from laws that have to be obeyed, e.g. data pro-
tection act, standards that the company wants to
conform to, e.g. from ISO, and patents and licenses
that are used.

Company-specific constraints are influences from
business rules or information politics, e.g. servers
may only be set up in countries with a special com-
mercial agreement, and system-specific constraints
derive from business goals, the system vision, and

system goals, e.g. the system that shall achieve a 10% market share. Furthermore,
we list implications from the stakeholder context, e.g. concerning reporting, and
the operational environment, e.g. backup routines.



High Confidence Subsystem Modelling for Reuse 59

Compatibility: Compatibility issues contain descriptions of data flow, commu-
nication and technical constraints, and quality requirements. Most of the content
in this section are implications from below with regard to the abstraction lay-
ers, to say from the software and hardware layer and the technical realization
of the system. The data flow is characterized through its input and output, de-
scribed through syntax, semantics, and further constraints imposed e.g. by value
ranges or stepping. Communication and technical constraints are for example the
message format that is used on the communication bus of the system. Quality
requirements are usually the same as for the whole system. In some cases it may
be possible to break them down, e.g. for response time.

Illustrating Example “Travel Booking System”: A simple realization for
the subsystem border documentation is depicted in Fig. 3 in form of a template.
We use a travel booking system for illustration. The travel booking system in-
cludes all features related to travel booking, for example flight reservations and
bookings, hotel bookings, check-in, reporting, accounting, and scheduling. It is
designed as web service. The chosen subsystem is flight reservation and booking.

Fig. 3. Template for subsystem border documentation with example “Flight Booking”

4 Reuse of a Subsystem

For the reuse of a subsystem that has been documented in the way described
above, we have to ensure matching functionality as well as both conformity and
compatibility. We assume, we have listed all available subsystems in our software
(reuse) library with the purpose description provided in the subsystem border
documentation template, as described in the box entitled Functionality in Fig. 2
or in the example in Fig. 3. By performing a search on the software library, we
have found a subsystem with the functionality that matches our demands. For



60 B. Penzenstadler and D. Koss

the integration into a new surrounding system, we have to check for conformity
and compatibility with the new environment.

4.1 Validation of Conformity

In order to validate the conformity of the proposed subsystem with regard to
the new surrounding context, we consider a guided review as the most appro-
priate technique. When developing a system, we move downwards through the
abstraction layers, enrichening each layer with more technical detail. After im-
plementation, the integration process follows the reverse path through the ab-
straction layers. Thereby we have to validate on each level, that the system under
construction is conform to the specification developed earlier. This is the only
way to ensure that we developed “the right system”. The review has to be per-
formed manually by checking the different areas of context and comparing them
to the context of the new surrounding system. The structure of the subsystem
border documentation (Fig. 2) may serve as guidance for the review and the
corresponding part of the example in Fig. 3 is the box titled Conformity.

4.2 Verification of Compatibility with (U)CML

Verification ensures that we developed “the system right”, meaning that we ver-
ify that our implemented technical solution is compatible to the surrounding
environment. Therefore we have to check the static (syntactic) as well as the
dynamic (behavioural) fitting of a component with its environment. (U)CML -
(Unified) Compatibility Modelling Language has been developed to solve static
compatibility issues. (U)CML enables to model systems from scratch, specify the
interfaces of the components, compare corresponding interfaces, and check their
compatibility. It is also possible to verify the exchangeability of components.
Referring to our example in Fig. 3, we can verify the box headed Compatibility.
Similiar to interface automata [8], (U)CML takes an optimistic view on compati-
bility, that means, interfaces do not have to be a perfect match to be compatible,
but in contrast to interface automata this is not achieved by finding an envi-
ronment which is compatible (via the game theory). Instead, it is defined by
applying compatibility rules to the in- and output to expand the compatibil-
ity matching range. Furthermore, interface automata are restricted to software,
whereas (U)CML can also model hardware and electrical aspects of a system.

(U)CML Models. Consist of one system package on the highest level, which
defines and capsules the system. It consists of packages (containers) and compo-
nents. Packages can contain other packages and components, components cannot
be decomposed any further.

Packages and components are connected via arrows and the endpoints on com-
ponents are called plugs (in- and outputs). Arrows can only have one source and
one destination point and cannot be recursive. For bi-directional communication
there is a special communication-arrow. Information about the modelling objects
is stored inside description fields. Description fields store structural information.
Additionally, the component description field holds invariants and the plug de-



High Confidence Subsystem Modelling for Reuse 61

Fig. 4. A UCML model

scription field holds part of the interface specification for each in- and output of
the component. This can be for example a type, a variable name, or a function.
For a detailed introduction, see [16].

The two outstanding features are compatibility rules and optional in- and
outputs. The latter is especially useful when using the same components in
different systems. In- or outputs do not have to be connected necessarily, as the
system still works without errors, and therefore the component is (re)usable for
more than one system.

The other feature is the assignment of compatibility rules to the whole sys-
tem or to a specific in- or output. Rules are, e.g., that an integer output can be
matched to a long input or that a certain output value range corresponds to a
certain input value range. With these rules it is possible to expand the compati-
bility check for corresponding out- an inputs. Rules can also be added as pre- or
postconditions and invariants. They can be written in CCL, the Compatibility
Constraint Language, which is similar to OCL [14].

Static Compatibility Tests: (U)CML allows two different kinds of compati-
bility tests. One is the structural correctness of the (U)CML model, for example,
if every mandatory output plug is connected to a mandatory input plug, or if
every component has at least one input and one output plug. The other one are
compatibility tests, which are mainly performed by evaluating the corresponding
description fields of the output- and input-plugs. If they match, the plugs are
syntactically compatible, if they do not match, the compatibility rules have to
be evaluated to check, whether they are compatible after applying the rules.

After the static checks, the dynamic checks have to be performed. This is
currently being implemented in (U)CML by adding message sequence charts
that model the behavior of the components [9].



62 B. Penzenstadler and D. Koss

5 Conclusions and Future Work

We have presented an approach to the explicit modelling of subsystem borders
that facilitates communication with subcontractors and reuse. We have intro-
duced a concrete artefact model for the integrated reuse from the requirements
to the technical architecture. It provides for documentation demands with re-
spect to functionality and the context assumed by the subsystem.

Based on that artefact model, we have described the steps for conformity and
compatibility checking at the development stage of subsystem integration and/or
reuse. The approach presented in this paper will be validated and applied more
extensively to a case study within the REMsES research project [3].

Future work is to further detail the border documentation, as the proposed
template is still scarce and needs to be extended with appropriate documentation
techniques and tracing methods.

In parallel, we are currently working on an analysis of the criteria for the
decomposition of systems, the influences and trade-offs between them, and the
documentation of the rationale leading to such design decisions to further im-
prove the trust for reuse of high confidence systems modeling.

Acknowledgements. We would like to thank Daniel Mendez-Fernandez, Felix
von Ranke and the anonymous reviewers for their helpful comments and feedback
on earlier versions of this paper.

References

[1] Attiogbé, C., André, P., Ardourel, G.: Checking component composability. In:
Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 18–33. Springer,
Heidelberg (2006)

[2] Bastos, L., Castro, J., Mylopoulos, J.: Deriving architectures from requirements.
In: Requirements Engineering Conference. RE 2006. 14th IEEE International, pp.
332–333 (2006)

[3] Berghof Automationstechnik GmbH, DaimlerChrysler AG, SSE Universität
Duisburg-Essen, and Software and Systems Engineering Technische Universität
München. Project REMsES (2007), http://www.remses.org

[4] Bhuta, J., Boehm, B.: A method for compatible cots component selection. In:
COTS-Based Software Systems (2005)

[5] Broy, M.: A core theory of interfaces and architecture and its impact on object
orientation. In: Reussner, R., Stafford, J.A., Szyperski, C.A. (eds.) Architecting
Systems with Trustworthy Components. LNCS, vol. 3938, pp. 26–47. Springer,
Heidelberg (2006)

[6] Broy, M., Feilkas, M., Wild, D., Hartmann, J., Grünbauer, J., Gruler, A.,
Harhurin, A.: Umfassendes Architekturmodell für das Engineering eingebetteter
software-intensiver Systeme. Technical report, Technische Universität München
(to be published)

[7] Broy, M., Krüger, I., Meisinger, M.: A formal model of services. ACM Transactions
on Software Engineering Methodology (TOSEM), 16(1) (2007),
http://doi.acm.org/10.1145/1189748.1189753

http://www.remses.org
http://doi.acm.org/10.1145/1189748.1189753


High Confidence Subsystem Modelling for Reuse 63

[8] de Alfaro, L., Henzinger, T.A.: Interface automata. In: FSE 2001. Proceeding of
the 9h Annual Symposium on Foundations of Software Engineering, pp. 109–120.
ACM Press, New York (2001)

[9] Eckl, C.: Analysis and adaptation of MSCs for the examination of behavioral
compatibility. Master’s thesis, Technische Universität München (2007)

[10] Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: Why reuse is so
hard. IEEE Software 12(6), 17–26 (1995)

[11] Geisberger, E., Broy, M., Berenbach, B., Kazmeier, J., Paulish, D., Rudorfer, A.:
Requirements Engineering Reference Model (REM). Technical report, Technische
Universität München (2006)

[12] Hunt, J., McGregor, J.: A model for software libraries. In: Institute, R.P. (ed.)
Library-Centric Software Design (2005)

[13] The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street,
New York, NY 10017-2394, USA. IEEE Recommended Practice for Software Re-
quirements Specifications (IEEE Std 830-1998), 10 (1998)

[14] Koss, D.: CCL reference (2007),
http://www4.in.tum.de/∼koss/da/compMSCAdapt.pdf

[15] Koss, D.: Kompatibilität und Kompatibilitätsmanagement. PhD thesis, Technis-
che Universität München (to be published, 2008)

[16] Koss, D., Brandstätter, M.: (U)CML - a modeling language for modeling and test-
ing compatibility. In: Proceedings: Software Engineering and Applications (2007)

[17] Lankes, J., Matthes, F., Wittenburg, A.: Architekturbeschreibung von anwen-
dungslandschaften: Softwarekartographie und ieee std 1471-2000. In: Software-
Engineering, Essen 2005, pp. 43–54 (2005)

[18] Lin, H., Lai, A., Ullrich, R., Kuca, M., McClelland, K., Shaffer-Gant, J., Pacheco,
S., Dalton, K., Watkins, W.: Cots software selection process. In: Commercial-
off-the-Shelf (COTS)-Based Software Systems, ICCBSS 2007. Sixth International
IEEE Conference, February 26, 2007 - March 2 2007, vol. 2, pp. 114–122 (2007)

[19] Mei, H.: A component model for perspective management of enterprise software
reuse. Ann. Software Eng. 11(1), 219–236 (2001)

[20] Morisio, M. (ed.): ICSR 2006. LNCS, vol. 4039. Springer, Heidelberg (2006)
[21] Navarro, E.: ATRIUM Architecture Traced from Requirements by Applying a

Unified Methodology. PhD thesis, University of Castilla-La Mancha (2007)
[22] Penzenstadler, B., Mendez-Fernandez, D.: System decomposition for distributed

development. In: ICSP 2008 (submitted, 2008)
[23] Pohl, K., Sikora, E.: COSMOD-RE: Supporting the co-design of requirements and

architectural artifacts. RE 0, 258–261 (2007)
[24] Recknagel, M., Rupp, C.: Meßbare Qualität in Anforderungsdokumenten. Auto-

motive Vertikal 2, 12–17 (2006)
[25] Robertson, J., Robertson, S.: Volere: Requirements specification template (2006),

http://www.volere.co.uk/

[26] Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., Wood, B.:
Attribute-driven design (ADD). Technical Report CMU/SEI-2006-TR-023, CMU
SEI Pittsburgh (2006)

http://www4.in.tum.de/~koss/da/compMSCAdapt.pdf
http://www.volere.co.uk/


H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 64–75, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Trustable Brokerage Solution for Component and 
Service Markets 

Colin Atkinson, Daniel Brenner, Oliver Hummel, and Dietmar Stoll 

University of Mannheim, Chair of Software Engineering, 
68159 Mannheim, Germany 

{atkinson,hummel,stoll}@informatik.uni-mannheim.de, 
dbrenner@uni-mannheim.de 

http://swt.informatik.uni-mannheim.de 

Abstract. As other engineering disciplines have often demonstrated, the costs 
and risks involved in developing new products are significantly reduced by the 
emergence of effective component markets. However, such markets have yet to 
appear in software engineering. In this paper we present an approach that ad-
dresses one of the main outstanding obstacles to software component markets – 
the overhead involved in establishing confidence in a component or service. 
The approach employs a new test definition metaphor which allows potential 
users to establish whether components do what they are supposed to do without 
giving them full access. We refer to this as the “black box brokerage” model for 
software markets which protects the interests of component providers as well as 
component users, and thus improves the economic motivation for reusing com-
ponents. In the paper we also describe how a black box broker can be efficiently 
implemented, outline a new testing metaphor and explain its natural synergies 
with test-driven reuse. 

1   Introduction 

A long standing goal of software engineering has been to establish viable software 
markets that make it more cost effective to build new applications from third-party 
software components than to build them from scratch [1]. As other engineering do-
mains have often demonstrated, the emergence of effective component markets is the 
key to driving down costs and making product development more a matter of routine 
assembly than of innovative design. The lack of such markets, at present, makes soft-
ware engineering a highly-skilled and labor intensive activity and causes software to 
take up a disproportionate part of the cost of new systems and business processes. It 
follows that any technology or approach which removes some of the obstacles to 
third-party software reuse, and encourages the creation of viable software markets, 
will significantly boost the software industry’s ability to enhance efficiency and com-
petitiveness through more innovative applications. 

In the early days of software engineering, when applications generally took the form 
of individual “programs” and components were mainly regarded as code modules 
(e.g. packages, classes etc.), the goal of establishing software markets was explored 
under the banner of “software reuse”. As distributed architectures became ubiquitous, 



 A Trustable Brokerage Solution for Component and Service Markets 65 

and applications started to take the form of Web-based, client-server systems, compo-
nents became larger-grained and the goal of establishing markets revolved around de-
velopments in distributed object/component infrastructures (e.g. CORBA, J2EE, COM) 
[6] and web services1[18]. Regardless of the specific technologies and concepts used, 
however, the basic challenges involved in establishing a viable software market have 
remained more or the less the same. The first major challenge is to set up and operate a 
repository with a sufficient number of software artifacts to make the effort of searching 
for suitable components worthwhile [8]. The second is to provide mechanisms by which 
developers of new applications/processes can find components “fit” for their purpose 
within these repositories. If the number of components is below a critical mass - making 
the likelihood of success too low - or if the effort involved in finding suitable compo-
nents is too great, the economic balance will be unfavorable and developers will choose 
to “build” rather than “reuse” [3]. 

Significant progress has been made on the “component discovery” problem. Tech-
nologies for finding syntactically suitable artifacts within large software repositories 
have become more powerful in recent years [2], and public code search engines (such 
as Google Codesearch or Merobase) with millions of software assets provide a variety 
of syntactic search features ranging from specialized keywords corresponding to pro-
gram concepts (e.g. method or class) to full interface-based searches. Finding syntac-
tically suitable components is only half of the problem, however – it is also necessary 
to determine if components have the required semantics [7]. Unfortunately, the pro-
gress in syntactic search has not been matched by the progress in establishing whether 
software components are “fit for purpose”. Formal approaches for describing software 
components are still complicated and thus not widely in use today. Furthermore the 
halting problem makes it impossible to assess whether a candidate component in a 
repository fulfills a given query specification, which makes formal descriptions im-
practical in the context of very large repositories. Thus, in practice, the only effective 
method of establishing whether a component does what it is required to do is to test it. 
However, from the point of view of establishing component markets, using current 
testing metaphors and technologies as the basis for assessing a component’s fitness 
for purpose presents a fundamental dilemma - the level of visibility or access needed 
to test a component is the same as that needed to use the component. 

Hence, the basic problem is to find a way of allowing potential customers to gain a 
sufficient level of confidence that a product meets their needs while protecting the 
supplier’s right to be paid. When physical products are involved some kind of “right 
of return” is usually provided and suppliers are often rated according to their trustwor-
thiness. When digital products are involved (which cannot be returned in a physical 
sense) some kind of usage restriction is usually applied. For example, in the case of 
music or video entertainment products, limited snippets of the products are made 
available (e.g. in the form of short trailers or music clips) so that potential customers 
can evaluate the product before purchasing it. Experience has shown that markets 
only flourish when the right kind of confidence building measures that balance the 
evaluation needs of consumers with the protection needs of providers are in place. 

                                                           
1 The contributions we make in this paper are equally applicable for components and services 

although we will mostly mention only components for the sake of simplicity. 



66 C. Atkinson et al. 

Of course, manufacturers of end-user software applications have struggled with 
this problem for years and have developed a variety of strategies for allowing users to 
evaluate software. These all involve issuing a special license key that allows the 
product to be used for a restricted period of time or in a restricted way [11]. However, 
these approaches to access control are not attractive in the context of software com-
ponent markets because of the overhead involved. From the point of the view of po-
tential component users, the overhead involved in first obtaining the necessary access 
key – which usually involves some form of registration – and in designing test soft-
ware that properly handles the key and includes it in every invocation of the reused 
component, usually outweighs the potential benefits. It is likely that this issue will 
become even more pressing for future service markets where software agents are 
supposed to discover reasonable services automatically [17] and thus these overheads 
significantly tilt the balance towards the “build” end of the “build or buy” tradeoff. 

From the point of view of component providers, the overhead involved in imple-
menting an access control mechanism which is sufficiently secure against IT special-
ists – as opposed to the lay-people who use finished software applications – is usually 
too high. At the time of writing we are not aware of any fully-secure licensing 
mechanisms for traditional software components that are embedded as code within 
new applications, while for online services that are accessed over the Internet, there is 
the difficulty of distinguishing genuine new users from repeat users. 

Finding a non-abusable and efficient way of establishing confidence in a component 
is thus one of the main outstanding obstacles to establishing viable software markets and 
thus to the evolution of software development into a mature engineering discipline. In 
this paper we propose a new way of addressing this dilemma. In the following section 
we describe the idea of our so-called black box brokerage approach. Section 3 then 
introduces our new platform-independent testing metaphor and section 4 discusses how 
it is integrated into our recent developed test-driven reuse approach. In section 5 we 
discuss a secure implementation for black box brokerage and test-driven reuse before 
we conclude our contribution in section 6. 

2   Black Box Brokerage 

The basic principle behind our approach is simple. Since testing is still ultimately the 
only means by which a software component can be judged to be “fit for purpose”, the 
basic idea is to extend component search engines with the ability to test components. 
As well as delivering components that syntactically match users’ queries, search en-
gines enhanced in this way will also be able to determine whether components match 
semantically. In contrast with current testing approaches, however, a new form of 
“blind testing” is needed – that is, a form of testing in which the user is only provided 
with an indication of whether a test has been passed, not with the results returned  by 
the component. Furthermore, it is also important that the expected results of a test are 
not disclosed to the component under test since they could be used to return spoofed 
correct results. 

In effect, a search infrastructure enhanced in this way would also become a testing 
engine. As illustrated in Figure 1, its role would be to serve as a trusted broker between 
component providers and potential component consumers. Component providers need 



 A Trustable Brokerage Solution for Component and Service Markets 67 

to trust the engine with the access keys that it needs to test the components on behalf of 
potential consumers, while consumers need to trust the infrastructure with their tests and 
have confidence that it will execute them correctly on their behalf. Since the overall 
effect is to allow potential users to test components with minimal knowledge about them 
(i.e. as black boxes) we refer to the overall model as black box brokerage (BBB) and an 
engine which realizes this model as a BBB system. 

Black Box Broker

Tester

publish
search

test

supplier
Potential
consumer  

Fig. 1. Black-Box Brokerage Model 

From the point of view of component or service providers, a black-box broker is 
little different from a standard component repository such as a UDDI repository [18]. 
The difference is that the component provider must deliver all information and con-
tent needed to execute the component. From the point of view of potential customers, 
the only difference between a black box broker and a normal component search en-
gine is that once a component of interest has been identified (usually via a normal 
syntactic search) the user can supply one or more test cases which the broker will 
apply to the component on the user’s behalf. 

Although the idea is simple, there are some significant challenges to be overcome in 
its implementation. The first is to develop a test description approach which is suffi-
ciently rich to allow all necessary information to be supplied in a platform independent 
manner and which shields the unit under test from direct access by the customer – some-
thing that is not guaranteed with normal xUnit (such as JUnit or NUnit) test cases. The 
second problem is dealing with the security issues involved in executing untrusted, third 
party components or test cases on the broker. Steps must be taken to ensure that rogue 
software cannot damage the broker itself or diminish the level of service delivered to 
users (e.g. by crashing the system or causing a denial of access problem by hogging 
resources). The third problem is dealing with the resource and scalability requirements 
of black box brokerage. Testing is a resource intensive activity, and a successful black 
box brokerage service can expect to handle many concurrent tests. The supporting archi-
tecture must therefore not only be robust, but also highly efficient and scalable. 

3   BBB Testing with Test Sheets 

Although programming-based testing approaches such as JUnit are very powerful and 
allow the full range of language features to be used to define test cases, they are plat-
form-dependent and require extensive programming expertise. They are therefore not 
entirely suitable for black box brokerage. Fit [10], a table-based testing approach 
advocated in agile development [12], is much better in this regard since it allows 
developers to focus on the pure test logic (including test data) and results. However, 



68 C. Atkinson et al. 

Fit is limited in handling complex parameter types and the description of arbitrary 
relations between input values and results. These limitations make Fit unsuitable for 
BBB in its basic form, but nevertheless it provides good inspiration. We therefore 
propose a new test definition approach which combines the power of programming 
approaches like JUnit with the readability and higher level of security (since it is not 
possible to execute arbitrary code) of table-based approaches like Fit by using a 
spreadsheet metaphor. We refer to tests developed in this approach as “test sheets”. 

3.1   Test Sheets 

Test sheets are a first attempt to combine the advantages of both JUnit and Fit in an 
easy-to-use way. The simplicity and ease of use come through the spread sheet meta-
phor which is well-known from popular office suites. A spread sheet contains all the 
information needed to functionally test the component’s interface and to check for 
possible misunderstandings in the contract between user and provider. An exemplary 
test sheet for a simple ShoppingCart component is shown in the following figure. 

Table 1. A Fit-like test sheet for a shopping cart component 

ShoppingCartTest A B C
1 ShoppingCart create
2 Product create "Pragmatic Unit Testing" 29.95
3 Product create "Pragmatic Project Automation" 29.95
4 C1 addItem C2
5 C1 addItem C3
6 C1 getBalance B2 + B3
7 C1 getItemCount 2  

Each row in the table represents an invocation of an operation of an object. The object 
is specified in the first column, the called operation in the second column and the actual 
parameters for the operation in columns A and B. The vertical double line between col-
umns B and C is the so-called “invocation line”. This serves to separate the input parame-
ters (on the left hand side) from the output (i.e. result) parameters (on the right hand side). 
The mapping of input values to parameters is done according to the usual “order of ap-
pearance” mechanism used in most programming languages. In this example there are 
only two columns for input parameters, A and B, since no operation has more than two 
arguments. 

Column C serves two purposes. First, it stores the output values generated by the 
execution of each operation that returns a value and, second, it can contain the expected 
return values specified by the test designer. Thus, each cell in column C that contains an 
explicit value (e.g. C6 and C7) plays the role of an assertEquals statement in JUnit. The 
values and expressions defined in cells C6 and C7 represent the expected values that are 
compared to the actual returned values to determine whether the test was passed. Al-
though the example above shows only one column after the invocation line, C, it is 
possible to have more columns if there are more return (or output) values (e.g. a web 
service). The single column in this case results from the fact that Java methods only 
return one output value. In contrast with Fit, the state of a component is stored in our 
approach and is updated as the sequence of method invocations proceeds.  



 A Trustable Brokerage Solution for Component and Service Markets 69 

Table 1 shows a very simple case where the values in A2, B2, A3, and B3 as well 
as C7 are defined as literal values. However, because the rows and columns of the 
table can be addressed in a spreadsheet style, values can also be defined in terms of 
references to previous input or output values. For example, the expected value in C6 
is not defined as a literal value but as an expression referring to the input values.  

When this test sheet is executed in normal “open” mode, a new “output” test sheet 
is created which is the same as the original except that the output cells are colored red 
or green, depending on whether the expected value was returned. Also, in the former 
case, the “wrong” returned result is displayed in the cell alongside the expected value. 

3.2   Blind Testing 

In the blind testing mode, component consumers are also able to define the test cases 
they would like the software to satisfy and the results they would like returned (as 
usual). However, in this case, when running the tests the BBB system only returns 
information indicating whether or not failures have occurred. The actual results in the 
case of failure are not disclosed. For example, suppose a user were to create a test 
sheet with incorrect result values such as that in table 2, perhaps with the aim to ex-
ploit the ShoppingCart component without paying for it. 

Table 2. Test sheet depicting a “blind test”, which is hiding the actual test result 

ShoppingCartTest A B C
1 ShoppingCart create
2 Product create "Pragmatic Unit Testing" 29.95
3 Product create "Pragmatic Project Automation" 29.95
4 C1 addItem C2
5 C1 addItem C3
6 C1 getBalance 59.00
7 C1 getItemCount 2  

The table shows that, when applied to the software under test, the actual result 
(which is of course 59.90) of the invocation of the getBalance() operation (row 6) 
deviated from the value specified by the user, but the result of the invocation of the 
getItemCount() operation (row 7) was equal to the one expected. In the normal 
“open” testing scenario, a component consumer could surreptitiously “use” a compo-
nent by disguising invocations as tests. Since the values calculated by the component 
are returned to the tester he/she has full visibility of the component’s behavior. An 
unscrupulous consumer could therefore in principle create “fake” tests in which the 
required return values are artificial, but the input values represent real data for which 
the consumer needs results. However, with the blind versions of the tests this scenario 
is impossible. Because no results are ever returned to the tester, just an indication of 
whether the result matched the required value, no unscrupulous consumer can use the 
component surreptitiously. At the same time, genuine users who are searching for 
suitable components are still informed about whether a component is suitable for their 
needs (i.e. successfully returns the required values). 

Besides blind testing, further testing approaches are imaginable to discover infor-
mation about the behaviour (i.e. the semantics) of a component, all using the same 



70 C. Atkinson et al. 

basic interface metaphor. They differ according to two dichotomies – whether the 
component consumer or the component user defines the test data and whether or not 
the consumer is given visibility of the test results. This is depicted in the table below. 

Table 3. Overview of test modes feasible with test sheets 

showcaseproducer 
defined input

exploratory

openblindconsumer 
defined input

white box
visibility

black box
visibility

showcaseproducer 
defined input

exploratory

openblindconsumer 
defined input

white box
visibility

black box
visibility

definitive

 

Definitive Testing is a form of testing in which the consumer defines both the input 
values and the desired results. This implies that the user has a concrete idea of the 
behavior of the components he/she is searching for (hence the name definitive). There 
are two meaningful forms of definitive testing. Blind testing is the form of definitive 
testing in which the test results are black box (not visible to the user in the case of 
failure). Open testing is the forming of definitive testing in which the test results are 
white box (all returned values are visible to the user). This corresponds to the normal 
testing approach used in software engineering. 

Exploratory Testing is also a form of testing in which the consumer defines the input 
values. However, in this case he/she defines no result. Instead, the tests are used by 
the consumer to explore and learn about the behavior of a component by stimulating it 
with values. In effect, the test sheet serves as a kind of “execution harness” that al-
lows the consumer to test the component without the trouble of writing suitable invo-
cation code. It provides a means for consumers to “try out” components through a 
simple and convenient interface. 

Showcase Testing is a form of testing in which the producer, rather than the con-
sumer, defines both the input parameter values and the results. In a sense, this is the 
opposite of definitive testing. The purpose of such a test is to demonstrate to potential 
consumers what the component can do. In other words, the producer uses test sheets 
to display the behavior that he/she believes best characterizes or “showcases” the 
component. This exploits the fact that tests sheets have a kinship with specification 
techniques (especially algebraic specification techniques). 

4   Integration with Test-Driven Reuse 

Instead of expecting the user to first perform a normal syntactic search and then to 
subsequently perform tests on the returned individual components, it would obviously 
makes more sense to let the user define the test sheets before a search is carried out in 
order to let the BBB system retrieve matching components automatically. In this case, 



 A Trustable Brokerage Solution for Component and Service Markets 71 

the desired interface can be extracted directly from the test sheet and there is no need 
for the user to input a separate syntactic query. The result of such a test-driven search 
is simply a list of components which have passed the test. Test sheets can therefore 
also serve as query definitions as well as pure test definitions. 

In previous work [14] [9] we have described a Java-based incarnation of a test-
driven code search approach designed to support agile development methods such as 
Extreme Programming (XP). Due to its close relationship to XP, we refer to this ap-
proach as Extreme Harvesting. It provides a very natural complement to agile devel-
opment [4] since the development of tests prior to the functional code is a core tenet 
of such approaches. Once a JUnit test case describing the desired behavior of a to-be-
developed component has been defined, it can be used directly as the input for a 
test-driven search which may deliver prefabricated components with the required 
behaviour. This approach is perfectly suited for integration into a future BBB system 
since test sheets have to be translated into concrete testing code for execution anyway. 

 While the prototype presented in [9] was rather rudimentary, we have since then 
been able to improve the system and to seamlessly integrate a plugin for test-driven 
reuse into the well-known Eclipse IDE. In practice, the most notable feature to users 
is the automatic determination of the desired component’s interface. Consider the 
above ShoppingCart example for a better understanding of this feature. The corre-
sponding JUnit code would be similar to that shown in the upper part of the following 
screenshot from the Eclipse Java editor. 

 

Fig. 2. Screenshot of test-driven reuse plugin in the Eclipse IDE 

The lower part of the figure shows how our plugin has been able to extract the inter-
face of the ShoppingCart from the code of the test case and to find appropriate candi-
dates from a collection of about 4 million open source Java files [9] that match this 
interface syntactically. These were downloaded, compiled and tested in the secure envi-
ronment of a virtual machine (see next section). The successfully tested candidates are 



72 C. Atkinson et al. 

printed in green in the figure. Our system was also able to recognize and retrieve the 
Product class that is referenced in the interface of the ShoppingCart. 

If the test cases are well designed, this approach can deliver very high precision of 
typically 100% according to our experience so far. This is reinforced by experimental 
results in [19] where the sampling of functions with randomly created input values 
delivered 100% precision by the 12th sample at the latest. However, the recall can 
become rather low since a user has to anticipate the exact interface of a component. 
Thus, we recently implemented a broader search mode based on the well-known sig-
nature matching technique [14] that ignores all method and class names and tests all 
components having correct parameter signatures. However, this typically results in 
thousands of candidates and currently requires several hours to complete on a single 
server. In contrast, the above plugin delivers tested results typically within half a 
minute. Because of the lack of space we refer to [16] for more details on this topic. 

5   Testing Infrastructure 

As mentioned above, a major challenge in setting up a BBB service (as well as a test-
driven reuse system) is the realization of a suitable testing infrastructure that is capable 
of testing software components on behalf of potential customers. Our way of dealing 
with this problem is motivated by the field of server hosting where multiple virtual 
servers can reside on one physical machine [5]. In our context we refer to them as Vir-
tual Private Servers (VPS) for executing tests. Figure 3 shows our testing service archi-
tecture (simplified for illustration purposes). 

VPS
Manager

VPSVPSVPS

Physical serverPhysical server

Physical server

Testing and 
Load Distrib.
Service

Testing and 
Load Distrib.
Service

Testing
Client

Testing
Service
Testing
Service
Testing
Service

 

Fig. 3. Testing Service Architecture 

Tests are sent to a Testing and Load Distribution Service that in turn distributes the 
tests to one of a “farm” of physical servers each hosting a number of virtual machines. 
The Testing and Load Distribution Service does not necessarily have to be on a dedi-
cated physical server. From a software execution environment point of view, all VPSs 
are like independent servers. The key feature of such a server is that software executing 



 A Trustable Brokerage Solution for Component and Service Markets 73 

within a given VPS can have no effect on any other VPS, since each can only use a 
predefined amount of shared physical resources such as CPU or memory. If a compo-
nent under test causes any kind of damage, this damage will be limited to the VPS in 
which it is running. 

The number of tests to be executed increases with the number of brokered compo-
nents as well as with the number of users, thus both scalability and resource economy 
are required. As the dynamic creation of VPS instances is usually expensive in com-
parison to executing a test, a given VPS might execute more than one test concur-
rently. An important part of the system is thus the VPS manager. The main role of this 
manager is to monitor the state of VPS instances and to take appropriate action when 
a problem is detected. Examples of problems are deadlock and livelock or crashed 
components. The response to these situations is to restart the tests that were running 
after a suitable timeout has occurred or if necessary to restart the whole VPS instance. 

The number of VPS instances must be optimized to provide the best balance be-
tween performance and robustness according to the following tradeoff. The higher the 
number of VPS instances, the greater the robustness (because a VPS crash will impact 
a smaller number of simultaneously running tests) but the lower the performance 
(because of the overhead associated with each VPS instance).  

Another important job of the VPS manager is to keep a log of the progress of each 
of the tests carried out by each VPS. This is necessary in order to try to identify the 
components that lead to problems and to identify which tests need to be re-executed if 
a VPS fails due to the misbehavior of a component. Rogue components might be 
placed on a “black list” so that they are blocked from future tests and no longer block 
resources that could be used for other tests. 

As Figure 3 illustrates, scalability can be realized on two levels. One level is the 
number of VPSs and the allocation of resources to each VPS on one physical test 
server. The creation of one VPS is usually much more expensive than the perform-
ance of a test, but it is still reasonably efficient to create VPSs dynamically if the 
number of tests per VPS increases and the physical test server still has free resources. 
The other level of scalability is the number of physical test servers, controlled by the 
Testing and Load Distribution Service. 

6   Conclusion 

The purpose of markets, in whatever domain, is to allow producers and consumers to 
come together and attempt to forge mutually beneficial trading relationships. This has 
always depended on producers being given the ability to showcase and advertise their 
“wares” and consumers being given the ability to fully evaluate these “wares” to assess 
their suitability. However, these basic mechanisms have never been fully supported in 
the context of third-party software reuse. The realization of these features in practical 
component repositories has to date been hampered by two main problems. The first is 
the lack of a simple testing interface that allows users to describe the functionality they 
need in a concise yet complete way and enables test results to be shielded from compo-
nents when appropriate (so called blind testing). The second is the lack of a testing and 
search infrastructure with sufficient power, flexibility and robustness to provide the 
needed testing services to a large number of simultaneous users.  



74 C. Atkinson et al. 

The solution to the first problem, presented in section 3, relies on a new testing 
metaphor, known as test sheets, that combines the power of program-oriented testing 
approaches such as JUnit, the simplicity of tabular testing approaches such as Fit, and 
the ubiquity of the spreadsheet metaphor exemplified by office applications such as 
Microsoft Excel. Using such a spreadsheet metaphor for designing tests not only lends 
itself to the definition of blind tests and semantic searches, it also supports the show-
casing and exploratory discovery of component behaviour. 

The solution to the second problem, presented in sections 4 and 5, is to use a large 
component collection combined with a test-driven reuse approach and a scalable ar-
chitecture composed of multiple Virtual Private Servers (VPSs) that are controlled by 
a central test and load distribution service. Executing individual tests within the con-
fines of a single VPS not only allows the testing load to be distributed evenly, even 
over multiple physical servers, but also limits the potential damage that can be caused 
by rogue component.  It also allows the processing capacity of the infrastructure to be 
incrementally extended by adding new physical servers with a new suite of VPSs 
whenever new capacity is needed.  

In combination, we believe that these capabilities change the economics of compo-
nent reuse and shift the balance of the perennial “build or buy” dilemma towards the 
“buy” option. We therefore believe that this technology will enhance the chances of 
establishing viable component markets and thus boost industry's ability to deploy ad-
vanced software solutions in a rapid and cost effective way. In order to validate these 
claims we are currently building a prototype black box broker that supports the de-
scribed technology. Our aim is to make the described facilities publicly available online 
and to establish user acceptance through controlled experiments and study groups. 

References 

1. McIlroy, D.: Mass-Produced Software Components. In: Software Engineering: Report of a 
Conference sponsored by the NATO Science Committee, Garmisch, Germany (1969) 

2. Hummel, O., Atkinson, C.: Extreme Harvesting: Test Driven Discovery and Reuse of 
Software Components. In: Proceedings of the International Conference on Information 
Reuse and Integration (IEEE-IRI), Las Vegas, USA (2004) 

3. Frakes, W.B., Fox, C.J.: Sixteen Questions about Software Reuse. Communications of the 
ACM 38(6) (1995) 

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading 
(1999) 

5. SWSoft, Virtuozzo Server Virtualization (visited 09/2007), 
http://www.swsoft.com/en/products/virtuozzo/ 

6. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn. 
Addison-Wesley, Reading (2002) 

7. Mili, A., Mili, R., Mittermeir, R.: A Survey of Software Reuse Libraries. Annals of 
Software Engineering 5 (1998) 

8. Ravichandran, T., Rothenberger, A.: Software reuse strategies and component markets. 
Communications of the ACM 46(8), 109–114 (2003) 

9. Hummel, O., Atkinson, C.: Using the Web as a Reuse Repository. In: Proceedings of the 
International Conference on Software Reuse (ICSR-9), Torino, Italy (2006) 

10. Mugridge, R., Cunningham, W.: Fit for Developing Software: Framework for Integrated 
Tests. Prentice-Hall, Englewood Cliffs (2005) 



 A Trustable Brokerage Solution for Component and Service Markets 75 

11. Tsai, W.T., Paul, R., Cao, Z., Yu, L., Saimi, A., Xiao, B.: Verification of Web Services 
Using an Enhanced UDDI Server. In: Proceedings of the International Workshop on 
Object-Oriented Real-Time Dependable Systems (2003) 

12. Cockburn, A.: Agile Software Development. Addison-Wesley, Reading (2001) 
13. Hummel, O., Atkinson, C.: Supporting Agile Reuse Through Extreme Harvesting. In: 

Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, Springer, 
Heidelberg (2007) 

14. Zaremski, A.M., Wing, J.M.: Signature Matching: A Tool for Using Software Libraries. 
ACM Transact. on Software Engineering and Methodology 4(2) (1995) 

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable 
Object-Oriented Software. Addison-Wesley, Reading (1995) 

16. Hummel, O.: Semantic Component Retrieval in Software Engineering, PhD Dissertation, 
University of Mannheim, Germany (to appear, 2008) 

17. Hummel, O., Bostan, P., Atkinson, C.: Towards the Automated Selling of Web Services 
over the Internet. In: Proceedings of the International Workshop for Technology, 
Economy, Social and Legal Aspects of Virtual Goods, Leeds, UK (2006) 

18. Newcomer, E.: Understanding Web Services, XML, WSDL, SOAP and UDDI. Addison-
Wesley, Reading (2002) 

19. Podgurski, A., Pierce, L.: Retrieving Reusable Software by Sampling Behavior. ACM 
Transactions on Software Engineering and Methodology 2(3) (1993)  

 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 76–87, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Recommending Typical Usage Examples for Component 
Retrieval in Reuse Repositories 

Yan Li, Liangjie Zhang, Ge Li*, Bing Xie, and Jiasu Sun 

Software Institution, School of Electronics Engineering and Computer Science,  
Peking University, Beijing 100871, P.R. China 

Key Laboratory of High Confidence Software Technologies, Ministry of Education, 
Beijing 100871, P.R. China 

{liyan,zhanglj06,lige,xiebing,sjs}@sei.pku.edu.cn 

Abstract. Programmers tend to reuse existing components to reduce develop-
ment cost as well as improve productivity. While retrieving components from 
the reuse repository, developers often need to know how the components are 
used in different ways in order to judge which one is more appropriate. An effi-
cient way guiding developers to know how the components are utilized is by 
leveraging the example code. However, usually the examples provided in hand-
books and online documents are not adequate enough. To address this problem, 
we propose an approach recommending typical usage examples to developers 
by leveraging source code acquired from the Internet. For each component de-
velopers want to utilize, our method first retrieves relevant code downloaded 
from the Internet as candidate examples. The candidate examples are then clus-
tered and we choose a typical one from each cluster. Finally, the selected ones 
are ranked and returned to the developers. We implemented our method with a 
prototype system and conducted an experimental study to evaluate its effective-
ness. The experimental results demonstrate that our approach can provide ex-
amples to help developers know different usages of the component and thus has 
the potential to assist developers in reuse. 

1   Introduction 

Reusing existing components can help developers create applications with less effort 
and improved quality. In order to achieve the benefits of reuse, developers need to 
find proper components from the reuse repository. In a reuse-based development 
process, developers first think out a reuse plan and then make queries for components 
according to the plan [1]. Queries submitted by the developers are matched against 
each component using the retrieval mechanism in the repository. The developers then 
browse the returned components to identify the appropriate ones according to the 
reuse plan. Finally, developers make adaptation on the components identified appro-
priate and integrate them together [1]. 

Identifying proper components from the retrieval results can be quite important for 
the success of software reuse [2]. Inappropriate components can waste developers a 

                                                           
* Corresponding author. 



 Recommending Typical Usage Examples for Component Retrieval 77 

lot of time and efforts in the following adaptation and integration; and the situation 
may exacerbate when components are not cost-free. Currently, in many real-world 
reuse repositories, such as Source Forge [3] and Component Source [4]; developers 
identify whether a component is appropriate for the reuse plan by viewing its descrip-
tion text. However, sometimes the description text may not be clear and accurate 
enough to help the developers know which components are more appropriate in the 
following adaptation and integration. To assist developers in the identifying, reuse 
repositories should help them know how the components are used [5].  

Using example code can be an efficient way guiding developers to know how a com-
ponent is utilized. Therefore, reuse repositories can help developers by providing proper 
example code of the component. In the literature, researchers have already proposed 
several related work on providing example code to developers, which can be useful for 
reuse repositories. Holmes and Murphy proposed an approach to recommend developers 
with source code examples by using the structural context information [6]. Their work 
monitors the code that the developer is writing and locates relevant code in an example 
repository based on heuristically matching the code structure information. However, the 
examples provided by their work mainly concentrate on helping developers deal with 
problems in the software implementation phase. Further, at the moment of selecting 
components to start a reuse plan, it is common practice that developers do not have the 
exact structural context information yet, which limits the application of their method in 
reuse repositories.  

Google is another way that can be employed by reuse repositories to get the exam-
ple code for components. Currently, Google provides code search which can help 
users search publicly accessible source code hosted on the Internet [7]. However, 
Google’s work mainly aims to help developers locate relevant code according to the 
text similarity. While employing Google to acquire typical usage examples for a com-
ponent, it does not distinguish the usages of the component among examples and may 
bring developers a lot of redundant results. 

To help developers save efforts in the adaptation and integration, reuse repositories 
should provide code examples to help developers know as many typical usages of a 
component as possible. If developers can know different usages of the components, 
they can pick the most appropriate components and carry out the reuse plan with a 
low operational cost. Therefore, the possibility of reuse success can be increased. 

In this paper, we propose an approach to provide developers with examples that 
can help them know different usages of a component. To get the examples, our ap-
proach harvests source code from the Internet and then stores it in a code repository. 
For each component that the developers tend to reuse, our approach firstly finds rele-
vant code acquired from the Internet as candidate examples. Then, our method clus-
ters the candidates and selects typical ones from each cluster. Finally, the selected 
examples are ranked according to certain heuristic rules and presented to developers. 
We implemented a reuse assistant tool based on our method and evaluated its effec-
tiveness in an experimental study. The results show that the example code acquired by 
our method can help developers know different usages of the components and thus 
hold the potential to promote software reuse. 

The paper is organized as followings. In section 2, we will explain our method in 
detail. Section 3 gives the experimental study we carried out and makes an analysis on 



78 Y. Li et al. 

the results. Section 4 provides the related work. Discussion and future work are pre-
sented in section 5. In the last section, we conclude this paper. 

2   Our Approach 

Our method mainly takes three steps to provide code examples to help developers 
know different typical usages of a component, as shown in figure 1. Firstly, the code 
retriever selects candidates from the code downloaded from the Internet. Secondly, 
the code analyzer clusters the candidates and selects a typical one as example from 
each cluster. The clustering is based on the operation invocation frequency as well as 
the comment information. Thirdly, the result ranking mechanism ranks the examples 
and returns the result list. 

 

Fig. 1. The main process of our approach 

2.1   Code Retriever 

The first problem needed to deal with is how to get relevant code for the components. 
Despite examples are useful for developers, often the examples provided in the hand-
books and online documents are not sufficient enough [8]. Meanwhile, with the devel-
opment of Internet technology, more and more source code information is available on 
the web. Hummel and Atkinson investigated the number and categories of information 
resources on the Internet and found out a wealth of source code could be obtained [9].  

In the vast amount of source code, we believe that many examples showing how to 
use the components in different ways have already been well developed. By leverag-
ing these adequate source code resources on the Internet, we may acquire examples 
showing different usages for developers. 

A benefit that can be achieved by leveraging source code on the Internet is that the 
process of getting relevant code can be highly automated with a relatively low opera-
tional cost. Another advantage of utilizing source code on the Internet lies in that we can 
acquire examples for components in all different application areas. Besides, by 
downloading code from the Internet periodically, examples can be up-to-date with the 
components. 

We can acquire the code efficiently by using a crawler application. The crawler ap-
plication mainly focuses on these open source projects which provide public access to 



 Recommending Typical Usage Examples for Component Retrieval 79 

their source code. The downloaded source code is stored in a code repository for fur-
ther process. 

Whenever the developer needs code examples for a particular component, our ap-
proach retrieves relevant source code in the code repository. In our approach, the 
retrieval is done at the class level. Any class that makes invocation on the component 
will be returned as candidates. 

2.2   Code Analyzer 

Due to the vast amount of source code downloaded, the number of candidates re-
turned is usually quite large. Besides, many of them display duplicate usages of the 
component. To alleviate the developers’ cognitive burden in understanding the exam-
ples, we need to select the typical examples from the candidates and remove the re-
dundant ones. In order to achieve this goal, we cluster the candidates into different 
categories based on the usage of the component. By the clustering, we can remove 
code with duplicate usages and select the typical usage examples of the component.  

To distinguish candidates with different usages of the component, we should find out 
which features can represent the usage. Then we can employ these features to calculate 
the similarity between any two candidates and cluster candidates into different catego-
ries. In our approach, the clustering is carried out according to the invocation frequency 
on different operations of the component as well as the comment information embedded 
in the source code of candidates. 

Developers will make invocations on different operations of the component based 
on the reuse task. So, if two developers are carrying out the same task using the com-
ponent, they are likely to invoke the same operation set. In the contrast, different 
usages of the component can often lead to distinct operation invocation frequencies. 
So, we believe that the invocation frequency on different operations can reflect the 
usage of the component to a certain extent.  

Our approach makes a statistical analysis on the frequency of which operations are 
called in a candidate example. The operation invocation information for candidate j is 
represented in a vector VOj=<m1j, m2j, …, mnj>. Here n is the total number of opera-
tions that the component holds. The element mij denotes the times that operation i is 
called by candidate example j. 

To calculate the similarity between two candidates x and y on the operation invoca-
tion information simop(x,y), we use the cosine value of the angle that the two vectors 
form. This value will fall in the range [-1, 1]. A cosine value of 1 denotes two vectors 
are identical whereas -1 indicates no similarity at all. 

( , ) cos( , )op x ysim x y VO VO=  (1) 

The source code downloaded from the Internet often contains a certain amount of 
comment information. The comment information usually explains the purpose of the 
code. Thus, comment information can also be useful for distinguishing candidates 
with different usages.  

Our approach parses the candidates and extracts the comment information embed-
ded in the source code. Then we organize the comment information extracted using 
the vector space model after the process of stop words removing and stemming [10]. 
 



80 Y. Li et al. 

The comment information of candidate j is also represented in a vector VCj=<w1j, w2j, 
…, wmj>, where m is the total number of distinct words in all comments. In the vector, 
element wij stands for the relative weight of the word i and is calculated as the fre-
quency of word i appears in the comment of candidate j. Then, we figure out the simi-
larity between two candidates from the comment information aspect. The computation 
is also carried out according to the cosine value of the two vectors formed by com-
ment, as shown in formula 2. 

( , ) cos( , )co x ysim x y VC VC=  (2) 

We then combine the two kinds of similarity together using a linear method which 
is easy to understand and implement. So, the overall similarity between two candi-
dates x and y is carried out according to formula 3. 

( , ) ( , ) (1 ) ( , )op cosim x y sim x y sim x yα α= + −  (3) 

Here the parameter α is assigned to a value between 0 and 1 to balance the weight 
between the two kinds of information resources. To one extreme, if we set α to 1, only 
the operation invocation frequency is applied. To another extreme, just the comment 
information is taken into consideration if α is assigned 0. 

 

Fig. 2. The algorithm for code clustering 

Based on the criterion for calculating the similarity between two candidates, we 
can group the candidate examples into different categories by clustering. As the can-
didate examples involved can be many, the algorithm should be able to finish the 
clustering with high efficiency. We design a hierarchical clustering algorithm as de-
picted in figure 2. The key idea of this algorithm is to keep merging candidate exam-
ples similar enough until there are none.  

After clustering, our approach chooses one example from each group. We consider 
that the candidate which has the maximum sum of similarity to others in the same 
group can represent this group better and should be selected as the example. We can 
explain the selection criterion in a more formal way here. Let G be a group formed by 
clustering, the candidate x is selected from G if it can satisfy the conditions list in 
formula 4. 



 Recommending Typical Usage Examples for Component Retrieval 81 

, ( , ) ( , )
z G z G

x G y G sim z y sim z x
∈ ∈

∈ ∧ ∀ ∈ ≤∑ ∑  (4) 

Since the example is selected to delegate the whole group, all other candidates in 
the group can be seen as duplicates and are eliminated in the result list. 

2.3   Ranking Strategy 

After clustering the candidates and selecting the typical ones from each cluster, we 
get examples with different usages, which can give developers hints about whether 
the component is suitable for the reuse plan. Still, we need to rank the examples se-
lected from clusters properly because developers tend to view only the top part of the 
result list [11]. Furthermore, proper ranking can make developers know how the com-
ponent is used with less effort. In our approach, we carry out the ranking by using the 
following criteria. 

The first criterion defines that examples from larger clusters will get higher ranks. 
The rationale here lies in that if the cluster that the example belongs to owns a lot of 
candidates, the example can represent a usage of the component with high frequency. 
So the example can stand for a more typical usage of the component and is important 
for developers to know in reuse. Therefore, examples from larger clusters should be 
ranked higher. 

The second criterion is that the more comments the example has, the higher rank 
should be given. This criterion is based on the observation that the comments con-
tained in the example can give an introduction of the purpose of the source code. 
Developers can understand the examples with less effort if sufficient comments are 
given for explanation. So the examples with rich comment information are preferred 
in our ranking.  

The third criterion is that the examples in small size will be rank higher. As stated 
previously, the developers need to understand the examples and then decide whether 
the component is appropriate. If the cognitive burden for understanding examples 
becomes too much, developers may tend to give up reuse. Smaller examples can be 
easier for developers to understand and thus has the potential to promote reuse. Con-
sequently, we prefer examples with smaller size while ranking. 

3   Experimental Study 

3.1   Experimental Organization 

To evaluate whether our method can help developers know different usages of a com-
ponent, we implemented a prototype system and conducted an experimental study on 
the open source project Apache Lucene [12], which is a text search engine library 
written entirely in Java.  

In our experiment, each class or interface in the Apache Lucene was viewed as a 
component. We selected 14 classes from the Apache Lucene and got example code by 
using our prototype. These 14 classes were chosen because they implemented basic 
functions of the Apache Lucene and were essential for developers to utilize it. In the 



82 Y. Li et al. 

experiment, the parameter α in formula 3 was set to 0.7 according to our observation 
of the data. 

We compared our method with the Google code search [7]. To get example code 
from the Google code search, we used the class name with the keyword ‘Lucene’ as 
the query.  

3.2   Experimental Results 

We firstly compared the number of the results developers needed to browse by using 
the two methods if they got to know the same number of usages for a class. Since 
Google usually returned more results, our method was used as the base line in this 
comparison. For example, if the result list from our method contains 3 different us-
ages of a class, we will calculate how many results the users have to view in Google’s 
result list in order to know 3 different usages. If the method can help developers know 
various usages of the component more quickly, then the length of results needed to 
view is shorter.  

The results are list in table 1. From the table, we can see that in most cases, to 
know the same number of usages, the number of results needed to view by using the 
Google code search is larger. The only exception happened on the class ‘QueryParser’ 
because there was only one usage for it. Based on these results, we can conclude that 
our method can distinguish examples with different usages better and help developers 
know how the component can be used in different ways within a shorter result list. So, 
our approach can increase the possibility of reuse success to a certain extent. 

Table 1. The comparison on number of results needed to view 

Results needed to view Results needed to view 
Class Name 

Ours Google 
Class Name 

Ours Google 
BooleanQuery 6 19 QueryParser 3 1 

Document 9 29 Scorer 5 52 

Field 4 35 Sort 2 6 

Hits 5 72 SortField 7 16 

IndexReader 10 51 StandardAnalyzer 24 29 

IndexSearcher 9 10 Term 4 12 

IndexWriter 4 8 TermQuery 2 9 

In real-world scenarios, developers only have the time and patience to browse the 
top results. Therefore, we also compared the number of distinct usages appeared in 
the top results. Only the top ten examples for each result list were considered in this 
round of comparison if the size of result list exceeded 10.  

Table 2 shows the experimental results. The last two columns show the number of 
usages for each class in the top 10 results. We also give the actual length of each 
result list for this comparison in the bracket. For instance, the ‘BooleanQuery’ class 
held total 6 results by using our approach and 3 different usages were involved. From 
table 2, we can find out that our method demonstrates more usages than the Google 
code search for 8 out of 14 classes. For the other 6 classes, our method displays as 



 Recommending Typical Usage Examples for Component Retrieval 83 

many usages as Google. However, by inspecting the length of the result list for these 
6 classes, we notice that our method usually gets a list shorter than Google’s, which 
means our method can make developers browse fewer results and reduce their cogni-
tive efforts in identifying appropriate components.  

Table 2. The comparison on number of distinct usages in top results 

Number of usages 
Class Name 

Our method Google 
BooleanQuery 3(6) 2(10) 

Document 3(9) 1(10) 

Field 4(4) 3(10) 

Hits 3(5) 2(10) 
IndexReader 6(10) 3(10) 

IndexSearcher 4(9) 4(10) 

IndexWriter 3(4) 3(10) 

QueryParser 1(3) 1(10) 

Scorer 5(5) 4(10) 

Sort 2(2) 2(10) 

SortField 5(7) 4(10) 

StandardAnalyzer 1(10) 1(10) 

Term 3(4) 2(10) 

TermQuery 2(2) 2(10) 

Compared with the Google code search, our approach displays more usages in the 
top results and reduces the number of results needed to browse for most classes in the 
experimental study. So, we can conclude that our approach can better help developers 
know different usages of the components and thus facilitate the judgment about which 
component in the retrieval results is more appropriate. 

4   Related Work 

Helping developers acquire appropriate components is essential for successful soft-
ware reuse. In the literature, researchers have proposed many different approaches to 
facilitate component retrieval [13][14], including 1) free-text based approaches [15], 
2) facet based approaches [16], 3) signature based approaches [17] and 4) behavior 
based approaches [18]. Most research work only concentrates on improving the re-
trieval performance; whereas they do not pay attention to helping developers know 
which component returned in the result list is more appropriate by examples. 

Suggesting relevant code examples is an efficient way to help developers know 
how a component is used. Strathcona is an Eclipse plugin developed by Holmes and 
Murphy which recommends developers relevant code from an example repository [6]. 
Strathcona monitors the code under development and locates relevant example code 
based on six structure-based heuristics. Hill and Rideout propose the automatic 



84 Y. Li et al. 

method completion technique which helps a developer to complete a method body by 
machine learning techniques [19]. The method to be completed is represented in a 
multi-dimensional vector then compared with vectors for the examples. The example 
with best matching is returned as result. 

Different from their work which provides developers with examples under a spe-
cific context; in this paper our method focuses on presenting different typical usage 
examples of components in order to help developers identify which one is proper for 
reuse. Based on the example code we suggest, developers can select appropriate com-
ponents and carry out their reuse plan easily. Further, both of the above two research 
efforts require developers to provide proper seed code to get useful results. However, 
developers often can not give such seed code at the moment of selecting components. 

Mandelin et al. proposed an approach called Jungloid mining which can help de-
velopers synthesize code fragment they need [20]. Given the desired code in terms of 
an input type Tin and an output type Tout, their work synthesizes code snippets that 
takes an object of Tin and returns an object of Tout. The solution is generated based on 
the API signatures and a corpus of client programs.  

XSnippet presented by Sahavechaphan and Claypool assists developers by providing 
code examples about the object instantiation task at hand [8].  XSnippet supports a 
range of queries and utilizes a graph-based code mining algorithm to get relevant code.  

Both Jungloid mining and XSnippet focus on solving a particular kind of query 
about how to utilize a component. However, while trying to identify the appropriate 
components by code examples, developers may not have the ability to express his/her 
needs exactly in the form of query that can be accepted. 

The RVM (Reuse View Matcher) can describe how an application makes use of a 
particular class in a framework from different views [21]. However, the RVM relies 
on hand-crafted examples developed by experts which can be time-consuming and 
may not have the ability to cover all the classes in the system. 

There are also several pieces of work trying to promote reuse by making use of the 
information resources on the Internet. Seacord et al. designed a component search 
engine Agora [22]. Agora collects different categories of components from the Inter-
net by using different agents and then indexes the components by an introspection 
process. Woogle is a web services search engine which acquires WSDL files from 
several service publication sites [23]. Woogle supports similarity search by clustering 
parameter names of operations into meaningful concepts. Google code search is a 
search engine specialized for source code [7]. Despite these research efforts also make 
use of information resources on the Internet, they do not pay attention to help devel-
opers identify proper components by providing typical usage examples. 

5   Discussion and Future Work 

5.1   Issues about Code Clustering 

In our approach, we employ both the operation invocation frequency and the embed-
ded comment to cluster the candidate examples. A parameter is used to balance the 
weight between the two kinds of information resources. In our experimental study, we 
set the parameter manually by inspecting the information available in the two kinds of 



 Recommending Typical Usage Examples for Component Retrieval 85 

information. In future, we will conduct more experiments in larger scale to discover 
rules about how to automatically determine the relative weight between the operation 
invocation frequency and the comment information. 

In our approach, the order of operation invocation is not taken into consideration in 
the clustering. For instance, suppose the component holds two operations A and B, the 
operation invocation sequence ‘A,B’ and ‘B,A’ will be considered as the same usage 
in our approach. However, sometimes the information resided in the order of the in-
vocation sequence can also be helpful for developers. Different invocation orders of 
operations may indicate distinct usages of the component. Thus, we will testify 
whether our approach can achieve better performance by taking the order of operation 
invocation into account. Further, we also try to find out other useful features for the 
example clustering. 

5.2   The Inter-component Example 

In our approach, we provide code examples about how a component is used in different 
ways to help developers. However, sometimes developers also need examples about 
how to cooperate several components together as to judge which component is more 
appropriate. For example, in a typical JDBC application, in order to execute a SQL 
statement in database, developers have to create an instance of ‘java.sql.connection’ 
class first which holds the database connection, and then use this object to create the 
instance of SQL statement to be executed. To address this kind of problems, we plan to 
extend our method to provide examples across component boundaries in the future.  

5.3   Example Filtering Mechanism 

In our approach, we provide developers with examples that display how a certain 
component is used in different ways. However, in certain scenarios, the reuse task at 
hand may have already formed several restrictions to the developers. Only examples 
that satisfy these restrictions can be helpful for developers. Hence, developers may 
have to filter code examples according to the task. Also, developers with different 
knowledge background may have distinct opinions about which examples are more 
helpful. We believe the personalized filtering and ranking service can enhance the 
effectiveness of our approach if provided. Therefore, setting up an efficient and con-
venient example filtering mechanism to facilitate developers is also required in our 
future work. 

6   Conclusion 

Learning by code examples is an efficient way for developers to know how components 
are used. While identifying proper components from the reuse repository, developers 
often need code examples to depict various typical usages of the components. However, 
the examples provided in the handbooks and online documents usually are not sufficient 
enough.  

To address this problem, we propose an approach which recommends typical usage 
examples to developers by leveraging the source code from the Internet. To depict 
how a component is used in different ways, our approach firstly retrieves relevant 



86 Y. Li et al. 

code harvested from Internet as candidates, and then groups these candidates into 
different categories. In each category, a candidate is selected as an example. Finally, 
the examples are ranked according to several heuristic rules and returned to develop-
ers. We carried out an experimental study on the open source project Apache Lucene 
to evaluate our approach. Through the evaluation, our approach demonstrated the 
effectiveness in helping developers know different usages of the component. 

Acknowledgement 

We would like to thank Dr. Lu Zhang for his valuable contribution to this paper. This 
research was sponsored by the National Grand Fundamental Research 973 Program 
(SN: 2005CB321805), the State 863 High-Tech Program (SN: 2006AA01Z189), the 
National Key Technology R&D Program (No.2006BAH02A02) in China. 

References 

1. Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse-based software engineering: techniques, or-
ganization, and controls. Wiley-Interscience Press, Chichester (2001) 

2. Mili, H., Mili, F., Mili, A.: Reusing software: issues and research directions. IEEE Transac-
tion on Software Engineering 21(6), 528–562 (1995) 

3. SourceForge (2007), http://sourceforge.net/ 
4. ComponentSource (2007), http://www.componentsource.com/ 
5. Ye, Y., Fischer, G.: Supporting reuse by delivering task-relevant and personalized informa-

tion. In: Proceedings of the 24th International Conference on Software Engineering, pp. 
513–523 (2002) 

6. Holmes, R., Murphy, G.: Using structural context to recommend source code examples. In: 
Proceedings of the 27th International Conference on Software Engineering, pp. 117–125 
(2005) 

7. Google Code Search (2007), http://www.google.cn/codesearch/ 
8. Sahavechaphan, N., Claypool, K.: XSnippet: Mining for sample code. In: Proceedings of the 

21st ACM SIGPLAN conference on Object-Oriented Programming Systems, Languages, 
and Applications (OOPSLA), pp. 413–430 (2006) 

9. Hummel, O., Atkinson, C.: Using the web as a reuse repository. In: Proceedings of the 9th 
International Conference on Software Reuse, pp. 298–311 (2006) 

10. Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addison-Wesley/ACM 
Press (1999) 

11. Drori, O.: Algorithm for documents ranking: Idea and simulation results. In: Proceedings of 
the 14th International Conference on Software Engineering and Knowledge Engineering, pp. 
99–102 (2002) 

12. Apache Lucene (2007), http://lucene.apache.org/java/docs/index.html 
13. Mili, R., Mili, A., Mittermeir, R.T.: A survey of software storage and retrieval. Annual of 

Software Engineering 5(2), 349–414 (1998) 
14. Frakes, W., Pole, T.: An empirical study of representation methods for reuseable software 

components. IEEE Transaction on Software Engineering 20(8), 617–630 (1994) 
15. Maarek, Y., Berry, D., Kaiser, G.: An information retrieval approach for automatically con-

structing software libraries. IEEE Transactions on Software Engineering 17(8), 800–813 
(1991) 



 Recommending Typical Usage Examples for Component Retrieval 87 

16. Prieto-Diaz, R., Freeman, P.: Classifying software for reuse. IEEE Software 4(1), 6–16 
(1987) 

17. Zaremski, A., Wing, J.M.: Specification matching of software components. ACM 
Transactions on Software Engineering and Methodology 6(4), 333–369 (1997) 

18. Podgurski, A., Pierce, L.: Retrieving reusable software by sampling behavior. ACM 
Transactions on Software Engineering and Methodology 2(3), 286–303 (1993) 

19. Hill, R., Rideout, J.: Automatic method completion. In: Proceedings of the 19th International 
Conference on Automated Software Engineering, pp. 228–235 (2004) 

20. Mandelin, D., Xu, L., Bodk, R., Kimelman, D.: Jungloid mining: helping to navigate the API 
jungle. In: Proceedings of the 2005 ACM Conference on Programming Language Design and 
Implementation (PLDI), pp. 48–61 (2005) 

21. Rosson, M.B., Carroll, J.M.: The reuse of uses in Smalltalk programming. ACM Transac-
tions on Computer-Human Interaction 3(3), 219–253 (1996) 

22. Seacord, R., Hissam, S., Wallnau, K.: AGORA: A search engine for software components. 
IEEE Internet Computing 2(6), 62–70 (1998) 

23. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web ser-
vices. In: Proceedings of the 30th Very Large Data Bases (VLDB) Conference, pp. 372–383 
(2004) 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 88–99, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Reuse Repository System: From Specification 
to Deployment 

Vanilson Arruda Burégio1, Eduardo Santana de Almeida1, Daniel Ludrédio2, 
and Silvio Lemos Meira1 

1 Federal University of Pernambuco (CIn-UFPE and C.E.S.A.R.), Recife, Brazil 
{vaab,esa2}@cin.ufpe.br, silvio@cesar.org.br 

2 University of São Paulo (ICMC-USP), São Paulo, Brazil 
lucredio@icmc.usp.br 

Abstract. A repository is a necessary prerequisite to support software engineers 
and other users in the process of developing software with and for reuse. In the 
literature, there are several works that explore reuse repositories, however their 
focus is mostly on reusable component search and retrieval issues, while impor-
tant aspects of reuse repositories have not been properly explored. On the other 
hand, some questions raised by companies that desire to adopt or build a reuse 
repository remain unanswered. Such questions often include: What are the main 
roles and requirements of a reuse repository? What are the practical alterna-
tives? How a reuse repository must be designed? Motivated by these questions, 
this paper presents a systematic approach with comparisons to existing tools 
and techniques for specifying, designing and implementing a reuse repository 
that was successfully constructed and deployed in real Brazilian software facto-
ries. Additionally, we describe the main design decisions, problems found, and 
future directions for research and development. 

1   Introduction 

Reuse is not just a simple development technique and the success of software reuse 
programs depends on an effective application of both technical and non-technical 
aspects [5]. The technical aspects comprise, among other things, the creation of a 
software reuse repository that supports software engineers and other users in the proc-
ess of developing software for and with reuse. 

However, in practice, repositories are used as mechanisms to store, search and re-
trieve artifacts, lacking important services, such as supporting enterprise reuse man-
agement and component certification process. As a consequence, some existing reuse 
repositories have failed to deliver its expectations [6]. At the same time, some ques-
tions raised by companies that desire to adopt a reuse repository remain unanswered. 
Such questions often include: What are the main requirements of a reuse repository? 
What kind of artifacts should be stored? What are the practical alternatives? How a 
reuse repository must be designed? Under such motivation, this paper extends a 
previous one [11] and presents the specification, design, implementation and de-
ployment of a reuse repository system based on analysis of practical alternatives and 
solutions used in academy. 



 A Reuse Repository System: From Specification to Deployment 89 

2   Background 

There is an essential requirement of building a reuse repository not only as a compo-
nent storage mechanism, but also as a tool to support the following roles in an enter-
prise context [10]: i) a communication bus among stakeholders, ii) a management 
assistant, iii) a reuse promoter and iv) a quality assurer. In practice, different kinds of 
tools are used by companies as an option to store reusable assets and make them 
available to software developers [2]. In general, we can divide the practical alterna-
tives into two main types, i.e. general-usage and reuse-specific tools. 

 General-usage tools. This class comprises general purpose tools and systems 
commonly used by companies in the development and management of applications. 
This category includes: Configuration Management Systems (CMS), Metadata Re-
positories, Collaborative Systems and CASE tool repositories. 

 Reuse-specific tools. This type is formed by reuse-specific tools designed with the 
main goal of promoting software reuse. In this category we have the code search 
tools [4] and the component asset managers. 

 

Fig. 1. This summarizes the taxonomy of solutions that can be used, in practice, as reuse repositories 

3   Repository Specification 

From the analysis of the roles that a repository should perform to support a reuse 
process and the solutions commonly used in industry and academy, we defined a set 
of requirements (Table 1) that should be considered when building a reuse repository. 

The requirements listed in Table 1 do not represent a final or complete set of func-
tionalities which must be fully present in all reuse-specific repositories, since they  
 



90 V. Arruda Burégio et al. 

depend on the real necessities of each company. However, the identified requirements 
can serve as a basis for constructing a standard reuse repository to support a system-
atic reuse process. We have obtained good results in practical experiences involving 
the development of repositories that implements the set of defined requirements. 

Table 1. List of requirements 

Requirement Description 

1.  Asset 
Description 

The repository must define a generic element (asset) that can represent a reusable soft-
ware unit of different types. An asset model should include two parts [4]: the asset 
contents (set of reusable artifacts) and the asset metadata. 

2. Insertion Producers need to make their assets available for consumption and then repositories 
should allow asset insertion operation. 

3. Publish 
specification 

In some cases users should be able to publish only the asset specification (without its 
implementation/content). This allows developers to register interest in implementing 
such assets, to be notified when new demands arrive at the repository. 

4. Browsing Each asset should be grouped in different categories and it must be possible for users to 
browse assets through such categories. According to [2], this function is adequate to 
find the desirable asset when the repository contains relatively few of them. 

5. Search Repositories with a large number of assets must provide search mechanisms that allow 
users to find assets that meet their needs [3]. These mechanisms can be a combination of 
the following search types: Free-text, Keyword, Facet-based classification and semantic. 

6. Report  
generation 

The repository should provide services to generate reports that allow, among other 
things, to get an overview of how the repository is being used. 

7. User 
Notification 

Users should be able to register interest in different events with the aim of receiving 
notification from the repository when, for instance, new assets are added. 

8.  
Maintenance  
Services 

The repository system should implement administrative services that allow the mainte-
nance of the users’ inventory and also other inventories utilized by the repository such 
as asset artifact types, asset classifiers and hierarchies of catalogues. 

9. Version 
Management 

The repository should be able to store different versions of its assets, so developers are 
able to retrieve previous version of an asset and maintain its alternative implementa-
tions. 

10.  
Dependency  
management 

Users should be able to inform dependencies between assets. These dependencies 
represent relationship such as “uses” or “composed-of” relations. 

11. Feedback 
Services 

Users should be able to provide feedback about the assets they are using. The feedback 
services permit the identification of well-evaluated assets and also tracking of assets 
usage 

12.  Adver-
tisement of 
Services 

With the aim of promoting the reuse culture across the organization, repositories should 
offer services that allow the maintenance of reuse-related news, such as reuse initiatives, 
best assets producers, most reused components and so on. 

13. Multiple 
asset  sources 

It should be possible to store assets that point to artifacts (asset contents) stored in 
different kinds of asset sources that exist in the repository deploy context 

14. Certifica-
tion process 

The repository should support a certification process which assures the quality of its 
available assets. 

15. Metrics Users should be able to define, capture and measure reuse-oriented metrics and ROI 
models. The metrics analysis can indicate a lot of useful things about reuse and can help 
managers to reduce costs and measure the business impact of reuse [9][12]. 

16. Access 
Control 

The system should have mechanisms to limit user access to system services and reposi-
tories, if multiple repositories are supported. So, it should be possible to define different 
views among users. 

17. Change 
Control 

Users should be able to request and accept changes to assets. Such changes requests also 
include bug reports. 



 A Reuse Repository System: From Specification to Deployment 91 

3.1   Existing Solutions vs. Requirements 

The different existing solutions categories presented in Section 2 have different levels 
of support to the requirements defined in Table 1, as can be seen in Table 2. Such 
table was constructed based on a comprehensive analysis of 35 tools (5 per category). 
The meaning of a /blank is that the requirement is well or not supported by the ma-
jority (at least 3 of 5) of analyzed tools in a given category (see [8] for more details 
about this analysis).  

Hence, from Table 2, we can conclude that most of the analyzed solutions do not 
support effectively all functions listed in Table 1. Under such motivation, we attempted 
to handle this gap by designing a skeleton for a reuse repository architecture that satis-
fies the set of requirements defined in Section 3. The next Section shows the details of 
this architecture. 

Table 2. Solutions Analysis 

Reuse-specific General-usage 
Collaborative Systems #  

Require-
ments 

Asset 
Managers 

Code 
Search 
Tools 

CMS 
Metadata 
Reposito-

ries 

Shared 
Projects 

Repositories 

Wiki 
Systems 

CASE 
Tool’s 

Reposito-
ries 

1   
2   
3   
4   
5   
6   
7   
8   
9   
10   
11   
12   
13   
14   
15   
16   
17   

Legend:  - typically supported; blank: not supported in a comprehensive way 

4   Repository Design 

A general definition of the reuse repository architecture is presented in this Section. 
The overall goal is to satisfy the set of requirements defined in Section 3 in a consis-
tent way, providing a unified vision of what the repository looks like and how its 
internal elements are combined in order to provide users with a standard reuse reposi-
tory that supports the produce-manager-consumer process explained in [1]. 

Figure 2 summarizes the architecture of the reuse repository decomposed into 
modules and sub-modules. The main modules of the reuse repository are: (1) Infra-
structure, (2) Production, (3) Management and (4) Consumption. The following sec-
tions describe the details of each module and how its components work in conjunction 
to provide the necessary functionality. 

 



92 V. Arruda Burégio et al. 

 

Fig. 2. Repository Architecture Overview 

4.1   Infrastructure 

This module groups a set of common services which are shared by the other modules. 
Figure 3 shows how the infrastructure module is internally organized. At the center of 
the infrastructure module is the Asset Metadata Repository. This is where all asset 
metadata are stored and managed. Another important element of the infrastructure 
module is the Artifact Manager. The Artifact Manager represents a repository of asset 
contents (set of reusable software artifacts). Artifacts can be stored in two ways – 
logically and physically. The latter means that the artifact is saved locally in the re-
pository system. On the other hand, a logically stored artifact means that the artifact is 
stored in an external source, such as an internet site or any other reuse repository. In 
 

 

Fig. 3. Infrastructure Module 



 A Reuse Repository System: From Specification to Deployment 93 

that case, a reference to an artifact, which allows its retrieval in the future, is saved. In 
both cases - logically and physically - metadata about the artifacts are stored in the 
metadata repository. Artifact metadata include things such as artifact description and 
artifact type (ex.: source code, test report, executable code, design model, user docu-
mentation). Once the asset content and its metadata has been updated or inserted, 
listeners automatically start the indexing phase. During this phase, performed by the 
Indexer component, the artifacts and metadata of the asset are read from the Metadata 
Repository and the Artifact Manager, and then such data is parsed, being actually 
indexed. The resultant index is used to search the assets in repository. 

Another element in the infrastructure module is the Notifier component, which is 
responsible for automatic support to user notification triggered by some system 
events. Examples of such events are modifications on existing assets, inclusion of 
new versions, deletions and so on. 

Finally the Access Control sub-module is responsible for determining and verifying 
user permissions. This sub-module contains the definition of a generic access control 
and can interact with an existent base of users. In this case, an implementation of a 
simple interface (IUserManagerAdapter) must be provided. 

4.2   Production Module 

This module is responsible for services commonly used by assets producers. Such ser-
vices are provided by the Asset Register component. The Asset Registry is responsible 
for the insertion of assets. It treats two types of data: the asset metadata, which must be 
stored in the Metadata Repository; and the asset contents, which represent artifacts to be 
managed by the Artifact Manager component. Beyond that, the Asset Registry interacts 
with two other production elements: Version and Dependency Manager.  
 
Version Manager: Includes the operations related to asset version management, i.e., 
create, update or delete a version. In addition, other operations must be supported, 
such as, view differences between two versions, list the previous and next versions of 
a specific asset; 

Dependency Manager: This component should contain all functionalities that permit 
asset producers to manage relations among assets, which can be stored or not in the 
same reuse repository. It must have a flexible classification schema that allows defin-
ing different types of relations, such as “is part of”, “is a”, “use”, “is composed of”. 

Figure 4 shows the production module in details. The dashed arrows represent planned 
operations that are not implemented in the initial version of the repository. Also, the 
Asset Extractor module, faded in the Figure 4, is not available in the initial set of 
functionalities. The Asset Extractor module accesses the source of information on the 
various existing legacy artifacts repositories, such as CVS and Subversion, as well as 
any other sources of information, such as file systems and databases, and making 
them available for the indexing and indexed contents retrieval phases. This is done so 
the actual source of information is decoupled from the reuse repository once its con-
tents are retrieved, eliminating the dependency to the original source and possible 
communication failures during search execution or content retrieval from end users. 



94 V. Arruda Burégio et al. 

 

Fig. 4. Production Module 

4.3   Management Module 

This module is responsible for all services used by repository administrators and as-
set/component certifiers. Repository administrators represent users responsible for 
controlling and maintaining the reuse repository. Certifiers are the users responsible 
for assuring assets quality. The management module can be divided into five other 
sub-modules as showed in Figure 5: 

 

Fig. 5. Management Module 



 A Reuse Repository System: From Specification to Deployment 95 

Asset Certifier: It is responsible for implementing the state machine related to the 
asset certification process used to certify the assets available in repository; 

Advertisement: It includes the operations that allow management of public an-
nouncements and news; 

Reports: Sub-module responsible for generation of all reports that can be used by 
project and organizational managers; 

Administration services: It includes the operations related to maintenance of the gen-
eral inventories utilized by the repository, such as asset artifact types, asset classifiers, 
hierarchies of catalogues, organizational groups and so on; 

Catalogue Manager: It is responsible for maintaining the catalogue of assets. Such 
catalogues represent virtual repositories that are associated to a specific organizational 
group. The virtual repositories can form a hierarchical structure that represents the 
company’s projects, teams or departments. 

4.4   Consumption Module 

This module is responsible for services used commonly by assets consumers. Such 
services are grouped into the sub-modules specified in Figure 6. 

 

Fig. 6. Consumption Module 

Asset Searcher: It is responsible for searching and browsing assets stored in the re-
pository. The search service uses indexes provided by Indexer element - located in 
infrastructure module - and the browse service utilizes hierarchies of catalogues - 
maintained by the Catalogue Manager of the Management module. It is possible to 



96 V. Arruda Burégio et al. 

configure what service (search, browsing or both) the repository should support. This 
flexibility is useful, because the repository can be adapted according to the quantity of 
stored assets (for example, browsing is adequate to repositories that contain relatively 
few assets [2]). 
 
Feedback Manager: It includes the operations related to maintenance of consumers’ 
impressions (feedbacks) about the assets used by them. The set of user feedbacks 
serves as an asset usage history, and can reveal the degree of acceptance and effi-
ciency that an asset has achieved. Hence, each feedback should record author, crea-
tion date, context in which the asset has been used, the result of the usage and other 
things that provide information about the effort required to use the asset. 
 
Retriever: This sub-module is responsible for implementing services that allow the 
asset retrieval, i.e., the retrieval of artifacts that compose asset content. With the aim 
of retrieving artifacts from multiple sources, this module interacts with the Artifact 
Manager component. During the retrieving phase the repository calculates a list of 
affinity assets thought the Affinity Policy component. Such list represents a suggestion 
of a set of assets related to the asset selected by the user; 
 
Interest Manager: this sub-module allows users to configure their interests in receiv-
ing notifications from the repository. Such interests range from interest in a specific 
asset to more general interest in a domain of components. 

5   Implementation and Deployment Experience 

In order to validate and refine our proposed repository we developed a solution in 
conjunction with the industry. We have been engaged in two industrial reuse projects 
which focus on environments and tools to support a reuse process. These projects are 
part of the Reuse in Software Engineering (RiSE) project [5]. 

Our first developed product was a web-based asset repository with a three-tier cli-
ent-server architecture developed in Java. Two released versions of the repository 
system were successfully implanted in a large Brazilian software factory and about 
2.500 developers have direct access to the corporate repository. The first version of 
repository implementation contained 423 classes, divided into 83 packages, with 
19.367 lines of code (not counting comments).  

The next Sections describe the initially provided reuse repository search compo-
nents and the integrations with existing development tools. Design decisions and the 
internal details of the components are presented in the remainder of this Section. 

5.1   Outline Implementation 

The main goal of the initial implementation was to provide a strong foundation with 
core components, where new components may be incrementally incorporated, im-
proving the overall performance of the repository. 

Search components. The basic search functionality of the solution is provided by two 
core components: (1) Searcher and (2) Indexer. The indexer and the searcher components 



 A Reuse Repository System: From Specification to Deployment 97 

use the Lucene [7] class library. The searcher component is responsible for formulating 
and executing queries. The search result ranking is performed on top of Lucene’s default 
relevance function by the ranking element that reads data from an internal tracer compo-
nent to prioritize more widely used assets. The proposed model also contemplates a search 
result filtering mechanism based on an access control policy. 

Integrations. The reuse repository must integrate with existing development and 
general usage tools in order to transparently provide developers and managers with an 
integrated environment that maximizes the reuse activity throughout the organization. 
The core implementation provides an extensible framework that supports integrations 
with a small effort from the solution side. The actual effort depends on the tool being 
integrated. The initial integration includes an Eclipse plug-in that is provided to in-
voke the searcher component and present the search results in its editor window. 

5.2   Design Decisions 

This Section analyses the main issues and problems raised during the implementation 
and deployment of the first repository system versions. This analysis has the aim of 
clarifying some of our decisions and helping others who desire to construct a reuse 
repository. The main issues are grouped as follows: 

Asset Model. The first question was to decide what asset model should be considered 
in the repository. Hence, we performed a comparative study between some compo-
nent and content specification models, and then we decided to adopt a RAS (Reusable 
Asset Specification) compatible asset model , mainly because the RAS model is more 
focused on the content type (asset) which we desire to store in a reuse repository and 
has became the most accepted standard in industry. 

Access Control. Our implemented repository has a role-based access control with 
four user roles: consumer, producer, administrator and certifier. Each of them is asso-
ciated to a set of system functionalities which are filtered when a user logs on the 
system. However, this approach alone was not enough to support the security needs of 
the company where the repository was deployed. The company was a software factory 
which had the necessity to limit the scope of access to group of assets, because there 
are several development teams that should not be able to access some assets owned by 
other internal teams. Moreover, there is a necessity to interact with outsourced devel-
opment teams, which should not have access to some private assets. 

Such problem was resolved through the definition of virtual repositories associated 
to a specific organizational group. The virtual repositories can form a hierarchical 
structure that represents the company’s projects, teams or departments. The virtual 
repository can assume one of the three related types: 

 Private – repositories of this type are only accessible to restricted users (the per-
mission is defined through the system) that pertain to the same organizational  
group associated to repository; 

 Private to organization – repositories of this type are accessible to all users that 
pertain to the same organizational group associated to the virtual repository; 

 Public – represents repositories that are accessible to any organizational group’s users.  



98 V. Arruda Burégio et al. 

With this approach, each group can manage their own assets and users can have 
different permissions within different organizational groups. 

Legacy systems and standards. Initially, we had some problems with deploying and 
adapting the repository to existent systems and standards used by the company. Such 
problems were resolved through the implementation of a set of adapters that represent 
repository system’s extension points.  Examples of such implemented adapters are: 

 Security policy adapter – it allows the company to configure the repository sys-
tem with its own security rules (ex.: user password policy) ; and 

 User base adapter – it represents an abstraction of the existent company’s user 
base infrastructure, such as, LDAP systems. This adapter allows validating users 
against existing LDAP systems, for improved access control for administrators and 
single sign-on for users. 

6   Concluding Remarks and Future Works 

Companies are always struggling to achieve cheaper, faster and better products. Ap-
propriate reuse repositories can make these goals more easily achievable. However, 
the existing practical and academic solutions present gaps and lack of support to some 
desirable roles that a reuse repository should play. 

In this paper, we present a work resulting from the application of a research made 
in conjunction with the industry, i.e. research and development together. Pragmatic 
considerations and practical solutions were taken into account in conjunction with 
state-of-the-art in order to specify, design and implement a reuse repository. Such 
work has been directly applied in Brazilian software factories with the aim of improv-
ing productivity, obtaining low costs and high quality through software reuse during 
the whole software development cycle. 

As future work, we are developing a set plug-ins to be integrated in several user 
environments, such as Eclipe and Microsoft Word. Thus, the reuse repository solution 
will be less intrusive to companies that already use such environments. Additionally, 
we have some works for integrating active searches in the developed plug-ins. All of 
these works form the first step in defining a complete reuse environment product line 
which is also in development and can be seen in RiSE’s website1. 

Acknowledgments 

This work is sponsored by Brazilian Agency (CNPq process number:475743/2007-5). 

References 

1. Apperly, H.: Component-Based Software Engineering: Putting the Pieces Together, pp. 
513–526. Addison Wesley, Reading (2001) 

2. Ezran, M., Morisio, M., Tully, C.: Practical Software Reuse. Springer, Heidelberg (2002) 

                                                           
1 http://www.rise.com.br/research/ 



 A Reuse Repository System: From Specification to Deployment 99 

3. Lucrédio, D., Prado, A.F., Almeida, E.S.: A Survey on Software Components Search and 
Retrieval. In: Proceedings of the 30th EUROMICRO Conference (2004) 

4. Garcia, V.C., et al.: Specification, Design and Implementation of an Architecture for a 
Component Search Engine. In: The 5° Workshop de Desenvolvimento Baseado em Com-
ponentes (WDBC 2005) (2005) 

5. Almeida, E.S., Alvaro, A., Lucrédio, D., Garcia, V.C., Meira, S.R.L.: RiSE Project: Towards 
a Robust Framework for Software Reuse. In: IEEE International Conference on Information 
Reuse and Integration (IRI), Las Vegas, USA, November 2004, pp. 48–53 (2004) 

6. Frakes, W.B., Fox, C.J.: Sixteen Questions about Software Reuse. Communications of the 
ACM 38(06), 75–87 (1995) 

7. Gospodnetic, O., Hatcher, E.: Lucene in Action. Manning Publications Co. (2004) ISBN 
1-932394-28-1 

8. Burégio, V.: Specification, Design and Implementation of a Reuse Repository, MSc dis-
sertation, Federal University of Pernambuco, Brazil (2006) 

9. Poulin, J.: Measuring Software Reuse. Addison-Wesley, Reading (1997) 
10. Almeida, E.S., Alvaro, A., Garcia, V.C., Mascena, J.C.C.P., Burégio, V.A.A., Nascimento, 

L.M., Lucrédio, D., Meira, S.R.L.: C.R.U.I.S.E: Component Reuse in Software Engineer-
ing, C.E.S.A.R e-book, Brazil (2007) 

11. Burégio, V., Almeida, E., Lucredio, D., Meira, S.: Specification, Design and Implementation 
of a Reuse Repository. In: The 31st IEEE Annual International Computer Software and Ap-
plications (COMPSAC) Conference, Short Paper, Beijing, China (2007) 

12. Mascena, J., Almeida, E., Meira, S.: A Comparative Study on Software Reuse Metrics and 
Economic Models from a Traceability Perspective. In: IEEE Information Reuse and Inte-
gration, Las Vegas, USA (2005) 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 100–111, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

COTS Selection Best Practices  
in Literature and in Industry 

Rikard Land1, Laurens Blankers2,3, Michel Chaudron3, and Ivica Crnković1 

1Mälardalen University, School of Innovation, Design and Engineering, Västerås, Sweden 
2 Logica, The Netherlands 

3 Eindhoven University of Technology, Dept. of Mathematics and Computing Science, 
The Netherlands 

{rikard.land,ivica.crnkovic}@mdh.se, 
laurens.blankers@logica.com, m.r.v.chaudron@TUE.nl 

Abstract. This paper presents an extensive literature survey of the software 
COTS component selection methods published to date, followed by a meta-
model consolidating the activities and practices of these methods. Together with 
data collected from practitioners and researchers in the embedded systems do-
main, we provide concrete recommendations which will enable organizations to 
identify suitable practices when designing a customized selection processes.   

1   Introduction 

As software development organizations build software using components developed 
by others (OTS = Off-The-Shelf; COTS = Commercial ditto), there is an increasing 
need to select the right components in a systematic, explicit, objective, and cost-
efficient way. Many processes and methods for COTS selection have been published, 
many funded by, and applied in large well-reputed organizations in demanding do-
mains (e.g. safety-critical systems, financial systems). The published processes thus 
build on a rich and hard-earned body of experience, but it is a major task to penetrate 
all relevant publications, compare them, and adopt and combine the most relevant 
parts for a particular organization’s needs. For this purpose, we have performed an 
extensive literature survey and a questionnaire survey and provide recommendations 
which can be used as a checklist when defining the strategy and procedures in the 
COTS component selection process. (In the rest of this paper, the term “component” 
is used to mean “COTS component”). 

1.1   Related Work and Scope Limitation 

In 1997 a workshop on COTS-based systems [1] was organized by the SEI (Software 
Engineering Institute) together with the industry where a number of issues were raised 
which seem to have found their way into the surveyed component selection methods. 
The few previous literature surveys that exist are more limited than ours in various 
ways: one brief overview was presented four years ago [2], however without any sub-
stantial comparison (and we include the more recent methods). In another study, three of 
the methods were compared with eight principles of agile software development [3]. 



 COTS Selection Best Practices in Literature and in Industry 101 

The brief survey of three earlier methods in the presentation of the method CRE [4] 
focused only on requirements. The relation between the selection process and surround-
ing processes has been described briefly in e.g. [5]. 

This survey includes literature which presents itself as a complete method or proc-
ess for component selection. The elements of these methods (e.g. comparison meth-
ods) could each be the starting point of a major literature survey. 

Section 2 presents the research methods used in this study, followed by an over-
view of existing published component selection methods in section 3. Section 4 pre-
sents a meta-model which consolidates the best practices of these methods. Section 5 
provides recommendations for the design of customized COTS selection methods, 
and section 6 concludes the paper. 

2   Research Method 

The first part of the research has been an exploratory, systematic literature review of 
published COTS selection methods. In order to identify similarities and differences, 
we listed preliminary dimensions of comparison, and defined, populated, rejected 
items, and thus grown this list iteratively until we arrived at the meta-model described 
in section 4. See more details in our report [6]. As a second part of this study, we 
conducted a qualitative survey with industrial practitioners and researchers in the 
embedded systems domain. We constructed a questionnaire with open and qualitative 
questions, which was then distributed to a targeted group of experts (typically soft-
ware architects/designers) in different companies and projects with the goal of collect-
ing as many and varying opinions as possible. This approach can be expected to give 
a good indication of the current state of practice. We received responses from eight 
industry practitioners (in eight different companies), with roles central to COTS selec-
tion (e.g. software architects), plus responses from five researchers in the field. 
Quotes from these responses are sometimes included (chosen with the purpose of 
illustrating issues mentioned by several of the respondents). As an additional valida-
tion measure, we used some interview data from earlier studies on related topics. 

3   Brief Survey of Component Selection Methods 

Table 1 provides a historical overview of the existing, published COTS selection 
methods and summarizes the main novelties introduced by each (if any). For space 
reasons we cannot here present the methods in more detail (for this, please refer to our 
report [6] or directly to the references for the methods); nor do the table intend to 
show how methods have adopted elements from earlier methods. When a method has 
not been given an explicit name by its authors, we have indicated this in italics and 
provide an acronym based on the title of the publication or main activities of the 
method. The main changes discernible over time, as new methods have been proposed 
are: first, the list of suggested attributes to evaluate has been extended; second, the 
issues of architectural compatibility have become a fundamental part through the 
evaluation of several complementary components simultaneously as single candi-
dates. Another difference is that some methods assume component requirements have 
been defined beforehand, others that they are developed the selection process. 



102 R. Land et al. 

Table 1. Historical overview of published component selection methods 

Year Method Main Novelty 
1995 OTSO [7]  

(Off-The-Shelf Option) 
Progressive filtering; evaluation criteria includes 
functionality, non-functional properties, strategic 
considerations and architecture compatibility; AHP 
suggested for comparison 

1997 PRISM [8] 
(Portable, Reusable, Integrated, 
Software Modules) 

Stand-alone test phase followed by integration 
evaluation and field test 

1998 PORE [9,10] 
(Procurement-Oriented 
Requirements Engineering) 

Closely intertwined selection of components and 
definition of system requirements 

1999 STACE [11] 
(Socio-Technical Approach to 
COTS Evaluation) 

Stresses importance of non-technical factors to evaluate 

2000 COTS Score [12] - 
2001 RCPEP [13] 

(Requirements-driven COTS 
Product Evaluation Process) 

Stresses evaluation objectivity 

CAP [14] Large number of quality metrics (>100) 
i-MATE [15] Reusable requirements for middleware selection 
PECA [16] Flexible structure of activities 
RDR [17] 
(Requirements and Design Reviews 

Explicitly describes the relation between acquired 
components and system parts being built in-house 

CRE [4] 
(COTS-Based Requirements 
Engineering) 

Requirements engineering process drives the selection; 
NFR framework is used to discuss non-functional 
attributes 

2002 

CSCC [18] 
(Combined Selection of COTS 
Components) 

Considers the total cost for a system rather than speci-
fying in advance the individual costs for different 
components 

2003 CEP [19] 
(Comparative Evaluation Process) 

- 

2004 CARE [20] 
(COTS-Aware Requirements 
Engineering) 

Intertwines system requirements engineering with 
component evaluation; later named CARE/SA [21] 
when giving software architecture a stronger focus 

CCCS [22] 
(Compatible COTS Component 
Selection) 

Considers sets of complementary component as 
candidates, focusing on how well components will fit 
together; also emphasizes prototyping as a means to 
collect reliable information. 

2005 

CPF [23] 
(Commitment, Pre-filtering, Final 
filtering) 

Strong focus on continuous improvement of the 
selection process itself 

2006 CSSP [24] 
(COTS Software Selection Process) 

- 

4   Meta-model of Existing Component Selection Methods 

The meta-model is in this section introduced briefly in a top-down manner; each ele-
ment is then discussed in more detail in section 5. 

The published methods can be described in terms of four processes (at the top of 
Fig. 1): there is a preparation process, an evaluation process, a selection process and  
 

 



 COTS Selection Best Practices in Literature and in Industry 103 

defines

based on

1..*

supports supports

Support 
Process(es)

Comparison 
Method Comparison

Decision

Requirement

Preparation
Process

Evaluation
Process

Selection
Process

Evaluation 
Criteria

Functionality

Non-functional 
Attributes

Architectural 
Compatibility

Business 
Considerations

Evaluation

High-level 
Evaluation

Prototyping 
Evaluation Data 

Collection

Evaluation 
Attribute

Confidence

Candidate

Component

performs results in

supports

1..*

1..*

uses

defines

identifies

has

derived 
from

1..*

includes

has

based on

feedback

makes

selects

acco
rdi

ng

to

of

 

Fig. 1. Meta-model of Software Component Selection Methods 

(only in some of the methods) supporting process(es). In the preparation process, 
potential component candidates are identified, evaluation criteria are defined (which 
are related to system requirements and defined with evaluation attributes to use as 
metrics), as well as a comparison method which determines how to do the required 
multi-criteria selection. The evaluation criteria are of up to four types: Funtionality, 
Non-functional Attributes, Architectural Compatibility, and Business Considerations. 
A candidate could be either a single component or a set of complementary compo-
nents that are evaluated together as a candidate solution. In the evaluation process, 
actual data is collected (data collection) that answers the evaluation criteria and are 
used to perform a comparison of the candidates. Two types of evaluations can be 
discerned: high-level evaluation (based only on easily collected information) and 
prototyping evaluation (where the candidate component itself is available). In the 
selection process, a decision is made based on this comparison. Both the data col-
lected and the comparison is associated with a level of confidence, which may range 
from confidence in the statistical sense (for quantifiable metrics) to the “gut feeling” 
when collecting qualitative data (e.g. concerning vendor claims and when evaluating 
the future prospects for the vendor). Other activities found in the literature can be 
classified as supporting process(es) with activities such as team formation, documen-
tation, planning and following up the selection process, and reflecting on the selection 
process as such and documenting experiences for future improvement. 



104 R. Land et al. 

5   How to Design a Customized Component Selection Method 

This section discusses the elements of the meta-model. For each such element, we 
first describe the different approaches suggested by the surveyed component selection 
methods, and the results from our questionnaire and secondly suggest a number of 
recommendations. We have for convenience labelled these with letters, but this 
should not be taken as a suggestion for which order to consider them in. Some rec-
ommendations are inferred mainly from the methods survey, and should be generally 
applicable. By also considering the questionnaire responses, we provide recommenda-
tions directed mainly to the selection of COTS for embedded systems. 

We expect that during the design of a customized component selection method in 
an organization, some additional issues need to be considered. It must therefore be 
ensured that all relevant stakeholders are involved in this process. 

5.1   Structure of the Activities 

Typically, a progressive filtering of components [1] is described in a process where 
candidates are evaluated, first using some easily measured but clearly discriminating 
criteria, and as components are discarded the level of evaluation detail and confidence 
in the results is increased. The concept of an increasingly detailed evaluation of a 
decreasing number of components is universal, but the overall structure of the activi-
ties suggested by the published methods differs: 

• Sequential with branches (and possibly a predefined number of loops). Meth-
ods: (PRISM), CCCS, (CSSP). 

• Iterative, i.e. continues until some exit criteria is met: PRISM, STACE, 
(PECA), CRE. 

• Situation-driven/opportunistic/flexible. I.e., given the information gathered so 
far, what is the most reasonable to do next? Methods: PORE, PECA. 

• Concurrent and interrelated processes. Methods: OTSO, CAP, (CRE), CPF. 

Supporting processes are mentioned in only some of the methods. Combining the 
suggested activities, this would include setting up a team (CSSP), planning and man-
agement of the evaluation and acquisition process (CSCC, RDR), and reflecting and 
documenting the process itself for future improvements including the actual compo-
nent data collected and evaluation attributes used and how costly and useful they were 
during the data collection (CAP, CEP, CCCS). Component selection methods devel-
oped together with organizations developing embedded, safety-critical systems tend to 
favour waterfall-like, plan-driven component selection method (RCPEP, RDR, CSSP). 
However, we believe the main reason for this is that these organizations are used to 
plan-driven processes in general. Generally, our comple-mentary data instead suggest 
that component assessment and selection should also for safety-critical and mission-
critical systems be iterative, opportunistic and flexible rather than plan-driven. The 
COTS selection process can (with advantage) be seen as part of the requirements and 
design phases (which may however be part of a formalized plan-driven process). Two 
illustrative questionnaire responses:  



 COTS Selection Best Practices in Literature and in Industry 105 

• “It is inevitable that new criteria emerge”. 
• “…it is like when people make the decision. We always make up our mind with 

the information gathered so far and choose the most optimistic option.”  

This analysis results in the following three recommendations when selecting an 
overall layout: 

Recommendation A: If your organization prefers some specific structure of activities 
(i.e. sequential, etc.), study the references to the presented methods in the bulleted list 
above in more detail.  

Recommendation B: Strongly consider a requirements-driven and iterative or flexi-
ble selection process – even if you are developing highly critical software and are 
used to plan-driven processes. 

Recommendation C: Since the supporting processes are mostly out of scope of the 
published methods, use combinations of available supporting processes  (by following 
the references above), and when possible combine them with other sources of good 
practices (e.g. process guidelines already existing internally in the organization, or 
general process standards). 

5.2   System Requirements 

The methods differ in how they consider the relation between requirements engineer-
ing and component selection. A few selection methods describe themselves as driven 
by the requirements engineering process (CRE, CARE). In other methods the re-
quirements are developed simultaneously with the component selection process 
(PORE, i-MATE). However, the majority of the methods assume system requirements 
exist (OTSO, PRISM, STACE, COTS Score, RCPEP, CAP, CSCC, PECA, RDR, 
CEP, CCCS, CPF, CSSP), but it is typically mentioned that the requirements can be 
renegotiated based on the component evaluation (most explicitly in PRISM, STACE, 
CAP, CCCS). PECA stresses that system requirements have to be translated into 
component evaluation requirements, which are not identical for all components under 
evaluation. CEP points out that evaluation criteria should be broad so as not to limit 
the search by too many constraints. The questionnaire respondents prefer loosely 
defined system requirements before components are searched for; example quotes:  

• “detailed but on a high level of abstraction” 
• “It depends on the product to be developed. It could be that the system require-

ments could be changed due to available software component.”  
• “Too detailed specification might make it unlikely that suitable components can 

be found” 
• “Very often, clients only have a very vague idea about the functions the system 

should provide. Due to time constraint, the system requirements could be formu-
lated and specified in parallel with the system development.” 

This discussion again leads to recommendation B in section 5.1. 



106 R. Land et al. 

5.3   Evaluation Criteria 

The methods in combination suggest four types of evaluation criteria: 

• Functionality. (Essentially all methods.) 
• Non-functional attributes. (Essentially all methods.) 
• Architectural compatibility. (OTSO, PRISM, CAP, PECA, RDR, CRE, 

CARE, CCCS, CPF, CSSP; we can also note that architectural compatibility is 
addressed when sets of components are evaluated together, see section 5.6.)  

• Business considerations. This includes evaluation of the vendors (e.g. their 
reputation and financial stability; RCPEP, PECA, RDR, CARE, CCCS, CSSP), 
estimated cost and risk in both the short and long term (considering e.g. avail-
able support for the component, frequencies of updates, maintaining backward 
compatibility and going out of business; RCPEP, CAP, RDR, CRE, CARE, 
CCCS), and organization infrastructure (e.g. skills; RDR, CRE).  

The methods generally do not specify some particular order of importance among these 
factors, and the general opinion among the questionnaire respondents is that “it de-
pends” (on the domain, on the organization, on the particular system and component 
criticality, etc.). If anything, cost seems to be the least important, because “the proper 
solution will save money in the long run” (quote); however any per-deployment cost 
(e.g. in terms of licensing or hardware resources) is an important factor for products 
with large volumes. Several of the questionnaire respondents emphasize architectural 
compatibility. Thus, everything is important, and the non-fulfilment of a single individ-
ual evaluation criterion could exclude a component.  

As said, some selection methods interleave system requirements with search for 
and evaluation of components (PORE, i-MATE, CRE, CARE). One reason is that it is 
not trivial to decompose system requirements into component requirements; one ques-
tionnaire respondent explained it as: “In addition to the component requirements, 
there will be additional requirements concerning several components and their inter-
connections (e.g., end-to-end deadlines).” Most component selection methods how-
ever assume that component requirements exist, to which the component features can 
be related. Concerning the level of detail to which component requirements should be 
specified, the questionnaire responses are inconclusive: 

• “The first challenge is decomposition of the system requirements, and the initial 
system architecture.  This architecture can then be used to loosely define the 
component functionalities and then their behaviour.” 

• “Until the system requirements are understood, it is hard to make a selection be-
tween similar choices.” 

• “a range of functionality is initially chosen” 
• “Too much details may exclude components that could be appropriate.” 
• “component market within [domain] is non-existing to some extend. Component 

requirements could be specified in more detail, if the component market is larger.” 
• “[challenging to] define the responsibilities and interfaces (both syntax and se-

mantics) … at a stage that not everything about the architecture is known yet” 



 COTS Selection Best Practices in Literature and in Industry 107 

This analysis results in the following two recommendations: 

Recommendation D: The following four types of attributes should all be considered: 
functionality, non-functional attributes, architectural compatibility, business consid-
erations. Elaborate what they mean more specifically for your particular system and 
organization, and their relative importance.  

Recommendation E: Consider what level of detail component evaluation criteria 
need to be specified in advance, since this depends on the system and organization. 

5.4   Evaluation Attribute, Data Collection, and Confidence 

It is possible to distinguish between two types of evaluations, based on how the actual 
data collection can be carried out (visible in most methods as well as in the question-
naire responses). We label these two phases high-level evaluation and prototyping 
evaluation. Some methods describe these as explicit phases (e.g. PRISM); in others 
they are implicit, as a consequence of iteration and refinement. 

In the first type of evaluation, high-level evaluation, typically many components 
are briefly evaluated based on information about components and vendors, gathered 
e.g. from in-house sources, literature reviews and interviews with other customers, 
from the vendors in the form of marketing material, by request to the vendor, vendor 
appraisals, or by publicly available information about the financial stability of the 
vendor. Illustrative questionnaire quote: “Get opinions from different people, other 
departments, or even other companies (use network to gather experiences)”. In the 
high-level evaluation, all four types of evaluation criteria should be considered (func-
tionality, non-functional attributes, architectural compatibility, and business consid-
erations). There are several things to bear in mind when planning this high-level 
evaluation: to increase confidence in the results several sources of information should 
be used (triangulation), focus should be on information that can discriminate between 
components (PECA), and criteria should be selected for which data are easy to find. 

A limited number of candidates are then selected for the second type of evaluation, 
prototyping evaluation, where the actual components are used for prototypes, system-
atic tests and/or experiments. This is done to assess certain properties in the context of 
the envisioned system with a high degree of confidence, and also to learn and under-
stand the component. Prototyping is explicit and important in some methods (PRISM, 
PORE, RCPEP, i-MATE, PECA, CCCS) and stressed by several questionnaire re-
spondents (example: “involving the component prior to deployment and by using 
extensive simulation, monitoring, or testing of the composition”). 

The main distinction between the two evaluation phases is whether the component 
needs to be available during the evaluation or not. In prototyping, the acquisition of a 
component may come with a (high) cost and can introduce (substantial) effort into the 
evaluation process, and the evaluation itself requires learning the component and 
systematically setting up, executing, and documenting many tests thoroughly. This 
consequently limits the number of components that can practically be evaluated. 

This analysis results in the following five recommendations: 

Recommendation F: Use as discriminating evaluation attributes as possible, to en-
sure an efficient filtering process. 



108 R. Land et al. 

Recommendation G: Use evaluation attributes for which data is as easy to collect as 
possible, to ensure an efficient filtering process. 

Recommendation H: Based on the (expected) number of existing component, the 
criticality of the components when used in the envisioned system, estimate how much 
time is acceptable and needed for high-level evaluation.  

Recommendation I: Consider how many components are expected to be subject to 
prototyping evaluation and how detailed the evaluation needs to be (which is a conse-
quence of the required confidence), and estimate the time and cost accordingly.  

Recommendation J: If there is a conflict between project budget and the evaluation 
estimates, the issue need to be satisfactory resolved as early as possible; in general it 
can be expected that choosing an insufficient component will negatively affect the 
system development greatly.  

5.5   Comparison Method, Comparison, and Decision 

The comparison and ranking of components is naturally based on many criteria. The 
evaluation of the criteria could either be made subjectively, or could be based on or 
supported by a systematic comparison method. The comparison method most com-
monly proposed by the published component selection methods is AHP, Analytical 
Hierarchy Process (OTSO, PORE, STACE, COTS Score, CRE). Other methods are 
WSM (Weighted Scoring Method) and Weighted Average (RCPEP, CRE, CEP), and 
using COCOTS [25] for effort estimation (CRE, CSSP). Our questionnaire suggests 
that these are with a few exceptions not known to practitioners (i.e. there is an adop-
tion cost associated with these methods). Others have argued that all of these evalua-
tion methods (“decision-making techniques”) have their drawbacks when applied to 
component selection [26]: the techniques may require disproportionate effort, requir-
ing stakeholders to provide preferences and weights for many criteria and specify how 
to aggregate the criteria into a one-dimensional scale (i.e. ranking) in the absence of 
concrete products, which is difficult and inefficient. Instead, gap analysis is suggested 
[26], meaning that for each component, the gap between requirements and provided 
capabilities is analyzed, followed by an estimation of the costs of bridging the gap. 
Since a formal comparison runs the risk of not catching the intent of the comparison, 
some methods also suggest or mention discussions, reasoning, and argumentation 
techniques (CARE, PECA, PORE). The questionnaire responses suggest that although 
formalized techniques bring a necessary structure into decision-making, they are us-
ing subjective and incomplete input. They must therefore be complemented with 
informal discussions to ensure “the ‘real’ issues” are ultimately considered (quote 
from a questionnaire response). The complexity of the decision is illustrated by an-
other quote: “The final selection is based on a combination of the technical evalua-
tion, the related business case for the tool and vendor, and trying to optimize cost. The 
final selection is always a trade off.” 

The option of building a component in-house may in some cases be a realistic solu-
tion (especially if no suitable component is found), and a few methods discuss this 
(CAP, (CRE), RDR, CCCS). The build alternative can be treated as one alternative 
among others during gap analysis, with an associated effort, cost, risk etc.  

 



 COTS Selection Best Practices in Literature and in Industry 109 

This analysis results in the following recommendation: 

Recommendation K: Combine a formalized comparison method with (structured) 
discussions. Consider gap analysis for the formalized comparison method. 

5.6   Components and Candidates 

It has been proposed that combinations of the available components should be evaluated 
together as a single candidate (CSCC, CCCS). There are two reasons for this: first, to 
minimize architectural mismatch, and secondly because the (hypothetical) choice of an 
initial component will help decomposing system requirements into component require-
ments (a “crystallizing seed”). This “puzzle assembly” was identified in the previously 
mentioned SEI workshop in 1997 [1] but has only become explicitly exploited in two of 
the recent selection methods. CSCC implements this approach by comparing the esti-
mated total system cost using various component alternatives (rather than focusing on 
the cost of individual components), and CCCS by explicitly considering a “candidate” to 
be a set of components which are architecturally compatible. The questionnaire re-
sponses indicate this is the advantageous approach: “Integration can be difficult other-
wise”; “Systems have to work together as a whole, and decisions cannot be made in 
isolation”. Apart from the technical aspect of integration, business considerations are 
also addressed by this approach; for example, if already several risky components are 
used, a project might want to avoid including more (risky) components in a project. A 
related approach is to maintain a list of potential components for each “slot” in the ar-
chitecture. If further downstream (also after development and deployment) a component 
is found to be insufficient (e.g. too low quality, or support is discontinued) the list will 
help identify a replacement component. 

“Keystone identification” [1] means the selection of a central component, technol-
ogy, or strategy that will have a great impact the selection of other components (e.g. 
“we will build on .NET”, “we will use middleware from a certain vendor and then 
choose other products known to integrate well”). None of the surveyed methods im-
plement this strategy explicitly. However, the questionnaire responses indicate that 
this commonly happens in practice:  

• “Yes it is common. E.g. LINUX vs Windows.” 
• “For example, a central database may be the most important part of a system for 

functionality and performance. That choice needs to be optimized, and other 
choices must be made with respect to that decision.” 

• “If another platform is chosen (e.g. VxWorks in stead of Windows CE) this has a 
lot of impact on the available components.” 

This analysis results in the following two recommendations: 

Recommendation L: Evaluate combinations of components together, in order to 
address architectural mismatch inherently in the process.  

Recommendation M: Identify any keystone technologies, platforms, and strategies 
early in the process, since that will exclude many other components.  



110 R. Land et al. 

6   Summary and Conclusion 

In this paper we have surveyed published software component selection methods, and 
provided a meta-model which provides a common terminology and comparison 
framework for selection methods. By bringing the collected best practices into the 
light, and with the additional data provided by a questionnaire distributed to software 
architects and researchers in the embedded systems domain, we have provided 13 
recommendations which will help organizations to more rapidly design customized 
COTS selection processes. In brief summary, our recommendations are: 

• Use four types of evaluation criteria: functionality, non-functional attributes, ar-
chitectural compatibility, business considerations. 

• Consider an iterative process intertwined with requirements engineering. 
• Address architectural compatibility by evaluating combinations of components, 

and consider the cost of the total system rather than individual components. 
• Consider the criticality of components, and what level of confidence is needed 

in the evaluation and selection decision, and allocate sufficient resources.  

This work will be followed up by industrial case studies of component-based systems 
life-cycles and processes.  

Acknowledgements 

This work was partially supported by the Swedish Foundation for Strategic Research 
(SSF) via the strategic research centre PROGRESS. The authors would like to thank 
the questionnaire respondents, the people who have reviewed earlier versions of this 
paper, and those who in other ways been helpful in this study. 

References 

1. Oberndorf, P., Brownsword, L., Morris, E., Sledge, C.: Workshop on COTS-Based Systems, 
Special report CMU/SEI-97-SR-019, SEI (1997) 

2. Ruhe, G.: Intelligent Support for Selection of COTS Products. In: Chaudhri, A.B., Jeckle, M., 
Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS, vol. 2593. Springer, Heidelberg (2003) 

3. Navarrete, F., Botella, P., Franch, X.: How Agile COTS Selection Methods are (and can be)? 
In: Proceedings of the 31st EUROMICRO Conference on Software Engineering and Ad-
vanced Applications, pp. 160–167. IEEE, Los Alamitos (2005) 

4. Alves, C., Castro, J.: CRE: a systematic method for COTS components Selection. In: Pro-
ceedings of the XV Brazilian Symposium on Software Engineering (SBES), Rio de Janeiro 
(2001) 

5. Crnkovic, I., Chaudron, M., Larsson, S.: Component-based Development Process and Com-
ponent Lifecycle. Journal of Computing and Information Technology 13(4), 321–327 (2005) 

6. Land, R., Blankers, L.: Classifying and Consolidating Software Component Selection Meth-
ods, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE, Mälardalen Real-
Time Research Centre, Mälardalen University (November 2007) 

7. Kontio, J.: OTSO: A Systematic Process for Reusable Software Component Selection, Univ. 
Maryland report CS-TR-3478, UMIACS-TR-95-63 (1995) 



 COTS Selection Best Practices in Literature and in Industry 111 

8. Lichota, R.W., Vesprini, R.L., Swanson, B.: PRISM Product Examination Process for com-
ponent based development. In: Proceedings Fifth International Symposium on Assessment of 
Software Tools and Technologies. IEEE, Los Alamitos (1997) 

9. Maiden, N.A., Ncube, C.: Acquiring COTS Software Selection Requirements. IEEE Soft-
ware 15(2), 46–56 (1998) 

10. Ncube, C., Maiden, N.A.: PORE: Procurement-Oriented Requirements Engineering Method 
for the Component-Based Systems Engineering Development Paradigm. In: Second Interna-
tional Workshop on Component-Based Software Engineering, Los Angeles (1999) 

11. Kunda, D., Brooks, L.: Applying Social-Technical Approach For Cots Selection. In: Pro-
ceedings of the 4th UKAIS Conference. McGraw-Hill, New York (1999) 

12. Morris, A.T.: COTS Score: an acceptance methodology for COTS software. In: Proceedings 
of the 19th Digital Avionics Systems Conferences (DASC), vol. 1, pp. 4B2/1–4B2/8 (2000) 

13. Lawlis, P.K., Mark, K.E., Thomas, D.A., Courtheyn, T.: A Formal Process for Evaluating 
COTS Software Products. IEEE Computer 34(5) (2001) 

14. Ochs, M., Pfahl, D., Chrobok-Diening, G., Nothhelfer-Kolb, B.: A COTS Acquisition Proc-
ess: Definition and Application Experience, ISERN report 00-02, Fraunhofer Institute for 
Experimental Software Engineering (IESE) (2002) 

15. Liu, A., Gorton, I.: Accelerating COTS Middleware Acquisition: The i-Mate Process. IEEE 
Software 20(2), 72–79 (2003) 

16. Comella-Dorda, S., Dean, J., Morris, E., Oberndorf, P.: A Process for COTS Software Prod-
uct Evaluation. In: Dean, J., Gravel, A. (eds.) ICCBSS 2002. LNCS, vol. 2255, pp. 86–96. 
Springer, Heidelberg (2002) 

17. Morizio, M., Seaman, C.B., Basili, V.R., Parra, A.T., Kraft, S.E., Condon, S.E.: COTS-based 
software development: Processes and open issues. Journal of Systems and Software 61(3), 
189–199 (2002) 

18. Burgués, X., Estay, C., Franch, X., Pastor, J.A., Quer, C.: Combined Selection of COTS 
Components. In: Dean, J., Gravel, A. (eds.) ICCBSS 2002. LNCS, vol. 2255, pp. 54–64. 
Springer, Heidelberg (2002) 

19. Phillips, B.C., Polen, S.M.: Add Decision Analysis to Your COTS Selection Process. Soft-
ware Technology Support Center Crosstalk (April 2002) 

20. Chung, L., Cooper, K.: Defining Goals in a COTS-Aware Requirements Engineering Ap-
proach. Systems Engineering 7(1), 61–83 (2004) 

21. Chung, L., Cooper, K.: COTS-Aware Requirements Engineering and Software Architecting. 
In: Proceedings of the 4th International Workshop on System/Software Architectures 
(IWSSA) (2004) 

22. Bhuta, J., Boehm, B.: A Method for Compatible COTS Component Selection. In: Franch, X., 
Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412. Springer, Heidelberg (2005) 

23. Cechich, A., Piattini, M.: Filtering COTS Components Through an Improvement-Based 
Process. In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412. Springer, Heidelberg 
(2005) 

24. Lin, H., Lai, A., Ullrich, R., Kuca, M., Shaffer-Gant, J., Pacheco, S., Dalton, K., McClelland, 
K., Watkins, W., Khajenoori, S.: COTS Software Selection Process, SANDIA REPORT 
SAND2006-0478, Sandia National Laboratories (May 2006) 

25. Abts, C.: Extending the COCOMO II Software Cost Model to Estimate Effort and Schedule 
for Software Systems Using Commercial-Off-The-Shelf (COTS) Software Components: the 
COCOTS Model, Ph.D. Dissertation, University of Southern California (October 2001) 

26. Ncube, C., Dean, J.C.: The Limitations of Current Decision-Making Techniques in the Pro-
curement of COTS Software Components. In: Dean, J., Gravel, A. (eds.) ICCBSS 2002. 
LNCS, vol. 2255. Springer, Heidelberg (2002) 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 112–115, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Mining Open Source Component Behavior for Reuse 
Evaluation* 

Ji Wu, Chun Wang, Xiao-xia Jia, and Chao Liu 

School of Computer Science and Engineering, BeiHang University, Beijing 100083, China 
{wuji,liuchao}@buaa.edu.cn, 

wangchun.think@gmail.com, sailgao76@hotmail.com 

Abstract. Reusing Open Source Component (OSC) has become more and more 
popular in developing in-house applications. Before integrating an OSC into 
project, the component has to be evaluated according to the project. This paper 
proposes the usage and dependency model to help understand OSC from the in-
teractions with its usage context. The usage and dependency model extends the 
traditional usage model with the context dependency and backward depend-
ency, which are widely observed in open source project. Based on the usage 
model, this paper proposes three metrics to measure the interaction complexity. 
To construct the usage and dependency model, the invocation matrix and the 
mining algorithm are proposed. The framework component in open source pro-
ject Junit 4.4 is selected to validate this research.  

Keywords: Open source component, usage model, usage and dependency model. 

1   Introduction 

Before integrating an OSC, the component has to be evaluated according to the pro-
ject requirements. There is several evaluation criteria (framework) proposed toward 
selecting proper components [1] [2]. How an OSC acts in its original project is always 
a concern, for example, the importance the component plays in its context and the 
ratio of the component interfaces used by the context are proposed as evaluation fac-
tors in [3]. OSC now is widely reused even in NASA, Norris presented the experi-
ences to evaluate and reuse OSC in NASA Mars project [4]. 

When we evaluate an OSC under a project, the component and its usage context 
could be identified. The component provides services to the context and depends on 
the services provided by the context at the same time. How to define and evaluate the 
component behavior under the context arises as the research problem in this paper. 
This paper proposes the usage and dependency model focusing on the inter-
dependencies between the component and its usage context. Three metrics are pro-
posed to measure the complexity of the dependency between component and context. 
This paper is structured into 5 sections. Section 2 presents the usage and dependency 
model; the algorithm to mine the model is presented in section 3. Section 4 presents 
the case study to validate this research. Section 5 concludes this paper. 
                                                           
* This project is sponsored by National Science Foundation under the project No. 60603039. 



 Mining Open Source Component Behavior for Reuse Evaluation 113 

2   Usage and Dependency Model 

Usage model is widely used in reliability testing. We extend the traditional usage 
model with the dependencies of OSC on its usage context to model OSC behavior.  

Definition 1: Usage and Dependency Model (UDM) is a directed graph {N, T, P}, 
N={S, E}∪F∪C, T={<S, x>|x∈F}∪{<x, y>,<x, E>|x, y∈F∪C}, P:<x, y>∈T  (l, p), 
l∈Z, p∈[0, 1.0]. 

S is start node and E is end node. F is the set of component interface nodes, and C is 
the set of context nodes. T contains all the legal transitions among nodes. P(<x, y>) is 
transition parameter in which l is the invocation length, i.e. the number of calls within 
the transition, and p is the transition probability. Any node x∈N, there is at least one 
path from S to E covers x. For any node x∈N, ∑ ܲሺ൏ ,ݔ ݕ ሻ.  ൌ 1.0௬ ; for any node 
y∈F, P(<S, y>).l=1; and for any node x∈F∪C, P(<x, E>).l=0. 

3   UDM Mining and Measurement 

The UDM could be built from method invocations. The dynamic invocation is mined 
from LBM [5], and the static one is mined from source code.  

Definition 2: Invocation matrix M is an n*m matrix that has n callers and m callees, 
M(x, y) = (l, c) denotes the length and occurrence of invocations from x to y. 

The algorithm extracts all the invocations from LBM and code and checks its qualifi-
cation with UDM. Any invocation that happens outside of the component will be 
ignored. We do not track into the invocations that happen in context unless there is a 
back-call to the component. The method that is only invocated by the component 
itself is not real interface and need to be pruned from matrix. To prune any compo-
nent method x, every predecessor of x will be connected to every successor of x. 

The UDM structure can be directly generated from matrix. The transition parame-
ter is computed by following equation, where m is the total number of callees. ൫݈ , ൯ ൌ ሺౠ.ౠ.ୡ , ౠ.ୡ∑ ౡ.ୡౡౣసభ ሻ  (1) 

Based on UDM, we propose the following three metrics to measure in what degree 
OSC is used, OSC depends on its context and the context can be substituted.  

Metric 1: Component Usage Strength (CUS) measures the extent to which the com-
ponent is used. Let an OSC have n interfaces (after pruning), the static and dynamic 
usage occurrences for these interfaces are s1,…,sn, and a1,…,an, then CUS ൌ ∑ ୟୱ୧ஸ୬   (2) 

Metric 2: Component Backward Dependency Strength (CBDS) measures the extent to 
which a component depends on its context in its usage. Let there are n non-loop usage 
paths from S to E, and m of them having at least one C node, then CBDS ൌ ୫୬   (3) 



114 J. Wu et al. 

Metric 3: Context Substitution Degree (CSD) measures the difficulty to substitute the 
context of an OSC with a different one.  CSD ൌ ∑ ௧.௧.௧ୀழ௫∈,௬∈େவ  ∑ ௧.௧.௧ୀழ௫∈େ,௬∈வ   (4) 

Transition length and probability contributes to CSD. The smaller probability 
means the bigger transition space, thus more difficulty to substitute. 

4   Case Study 

We select the junit.framework package, which provides the infrastructure to run test 
cases, in Junit 4.4 project to evaluate the models and metrics proposed. The package 
has three interface classes and seven normal classes to provide 82 public methods. 

This paper assumes the Java package as the granularity of OSC. The framework 
component, core of Junit, is reused and extended in many open source projects. We 
use all the 129 tests in junit.samples package to run Junit. The corresponding LBM 
and traces are collected. The UDM is mined and drawn manually in figure 1. 

 

Fig. 1. The usage and dependency model for junit.framework component 

From the model, we can find there are only 6 public methods are retained against 
the 82 ones. There are 5 context methods are depended by this component, and the C0 
backwardly depends on this component. This is in fact an evidence of tight coupling 
between the component and its context. The backward invocation of M1 has the aver-
age length 4.79 (not an integer). It shows there are multiple paths to invocate M1 in 
C0. We can find several indirect self-dependencies of the component: M1-M3-C0-M5, 
M3-C0-M4, etc. These indirect self-dependencies are very hard to test and to adapt to 
new context, because developer has to implement the new C0 not only to provide 
correct service to M3, but also request proper service from M1, M3, M4, M5 and M6. 

At the same time, we can find the backward transitions from C0 are complicated by 
the evidence of transition length and probability. Takes C0-M5 and C0-M4 as example, 
their occurrence chances are 0.03 and 0.52. It means the conditions and the context to 
invoke M4 and M5 are quite different. Because transition probability of M3-C0 is 1.0 
and the sum of the five backward transition probabilities is 1.0, C0 must be invoked 
and then C0 must invoke one of the five methods whenever M3 is invoked.  



 Mining Open Source Component Behavior for Reuse Evaluation 115 

The C0 has complicated behaviors observed in the matrix. There are 10 context 
methods are involved in the backward transitions from C0. There are two popular 
strategies to cluster the context nodes: (1) to group by the component interface being 
invoked; (2) to group by the root caller, i.e. C0. These two strategies indicate the way 
to substitute the context. For the first one, developer would design context method 
according to component interface. This kind of context method design may be easier, 
but developer has to design five ones. For the second one, developer needs to design 
only one context method, but the method is quite complicated. 

The CUS is (0.4+0.6+1+1)/4=0.75. The CUS shows that the test on the framework 
is not complete in the sense of call-coverage. There are 22 non-loop usage paths, and 
16 of them has C node. Therefore the CBDS is 16/22 = 0.73. The CSD has two parts 
to take into account. The first part focuses on the dependency complexity of OSC on 
the context: 26.7; the second part focuses on the complexity of the backward depend-
ency on OSC: 183. We can find the difficulty to substitute the context lies mainly on 
the complexity of the backward dependencies. 

5   Conclusions 

Reusing open source components has been popular in development now. The search 
and evaluation of open source component, however, is still trivial. This paper pro-
poses the UDM (and mining algorithm) to model the component behavior and de-
pendencies on its context. The UDM extends the traditional usage model with context 
dependency and backward dependency and thus gives a new vision on reusing com-
ponent: to acquire high performance component, developers have to provide a high 
performance context. Moreover, this paper proposes three quantitative metrics to 
evaluate the complexity of a component interacts with its context. To validate the 
approach and model, we select one component from Junit 4.4. The results show that 
the model and metrics can provide quantitative results directly, which are not avail-
able in the existing approaches. In the future, we would select more components to 
evaluate and provide guideline on how to use the UDM and the metrics. 

References 

1. Briand, L.C.: COTS Evaluation and Selection. In: Proceedings of the International Confer-
ence on Software Maintenance, pp. 222–223 (1998) 

2. Michel, R., et al.: Information System for Evaluation of COTS. In: Third ACIS Interna-
tional Conference on Software Engineering Research, Management and Applications, pp. 
64–69 (2005) 

3. Norris, J.S.: Mission critical software development with open source software: lessons 
learned. IEEE Software, 42–49 (January/February 2004) 

4. Wohlin, C., et al.: Certification of Software Components. IEEE Transactions on Software 
Engineering 20(06), 494–499 (1994) 

5. Ji, W., et al.: Java object behavior modeling and visualization. In: International Conference 
on Software Engineering Advances, ICSEA 2006, pp. 60–65 (2006) 

 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 116–129, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Combining Different Product Line Models to Balance 
Needs of Product Differentiation and Reuse 

Juha Savolainen1, Juha Kuusela2, Mike Mannion3, and Tuomo Vehkomäki1 

1 Nokia Research Center 
{Juha.Savolainen,Tuomo.Vehkomaki}@nokia.com 

2 Nokia Devices 
Juha.ha.Kuusela@nokia.com 

3 Glasgow Caledonian University 
M.A.G.Mannion@gcal.ac.uk 

Abstract. Software reuse is a key enabler for producing successful software 
intensive consumer products. Initially, just adopting reuse was enough to 
achieve competitive advantage; today an efficiently running product line is 
almost expected for any organization producing widely varying, software in-
tensive consumer products. The major source for competitive advantage has 
shifted to product line management, and especially an organization’s ability 
to optimize the alignment of its product line development approach with its 
competitive strategy. In this paper, we explore ways to match product line 
development for an organization pursuing differentiation strategy. In this con-
text, the success of the product line is determined by the success of the result-
ing products, their ability to gain differentiation against the competition as 
well as within the product portfolio. If all products appear too similar to each 
other, market segmentation fails. In this paper, we first discuss the problems 
hounding real industrial product lines. All the experiences are based on ex-
periences gathered being closely involved with more than ten operating prod-
uct lines and observing multiple failures in being able to realize true benefits 
of reuse. Then we show how a product line organization can be tuned so that 
the benefits of reuse are attainable while supporting significantly varying set 
of products. Finally, we give examples of product lines that have evolved into 
the direction suggested by us. 

1   Introduction 

Reuse is a prominent method for achieving faster time to market, higher quality and 
lower costs in the production of complex software intensive systems [1, 2].  In reuse 
process, a reusable asset is applied in a new context to create a product. Almost any 
work products can become a reusable asset [3].  The sharing of reusable assets may 
happen with or without a defined process, established infrastructure, or dedicated 
organization.  In practice, different approaches range from informal reuse to product 



 Combining Different Product Line Models 117 

line development [4].  Typically, when product line development methods are 
adopted, the overall quality of the reusable assets improves, a more stable software 
architecture is produced and it becomes possible to reach market niches that cannot 
alone support product development costs. 

There are many reasons why, when and how an organization decides on its ap-
proach to product line development.  These are aligned to the organization’s business 
strategy.  Porter [5] identified 4 primary generic competitive strategies across two 
axes cost and market scope (Figure 1). 

 

 

Fig. 1. Competitive business strategies 

 
In most industries, market leadership is held by organizations that maximize cus-

tomer appeal by reconciling effective differentiation with low cost.  This presents 
difficult technical challenges for product line development teams.  A core motivation 
for reuse adoption is to exploit the benefits of shared reusable assets.  When the pri-
mary generic competitive strategy is Cost Leadership or Cost Focus the emphasis for 
the product development team is on maximizing the reuse of common assets more 
than permitting variation.  However when the primary generic competitive strategy is 
Broad or Focused Differentiation the emphasis is more on permitting variation than 
maximizing reuse. 

 
 



118 J. Savolainen et al. 

This conflict is made more complex by the level of variation required in the Differ-
entiation strategy.  Within this strategy there is a spectrum of approaches.  At one end 
an organization may simply generate a large number of product variants that are actu-
ally very similar but overwhelm the market, and rely more on the brand of the organi-
zation for sales and less on understanding the differences across the product set.  At 
the other end is mass-customization where the goal is to create customized product 
variants and taken to extreme, each customer receives a personalized copy of the 
product. 

This paper explores the implications for product line development for main-
taining market leadership.  The question that this paper intends to answer is: how 
can we optimize the structure of the product line so that an organization achieves 
the benefits of reuse by reducing the time to market, reducing the unit cost of  
a single product variant and the benefits of significant differentiation for the  
products. 

In the section two we discuss forces that prevent organizations for achieving a bal-
ance between the reuse and differentiation.  Section three introduces our approach for 
product line development and explains why it solves the issues discussed.  Section 
four gives some industrial examples of this approach.  Related work is discussed in 
the section five and the relationship with our approach is considered.  Finally, we 
conclude and propose future work in the section six. 

2   Problems in Complex Industrial Product Lines 

Achieving the benefits of product lines in complex consumer products is not easy.  
There are a number of different forces that prevent organizations achieving the appro-
priate balance between reuse and differentiation. 

2.1   Tyranny of the Reuse Organization 

In reuse driven organizations there is a tendency to try to always maximize reuse.  
Emphasis is placed on ensuring all products use every reusable component, common 
user interface guidelines, standard interfaces, and ever increasing number of common 
components to give a common structure and behavior to all products.  A real problem 
in only focusing on reuse is that the differentiation between the products will be  
reduced. 

Tyranny of reuse occurs when an organization prioritizes reuse maximization in 
conflict with the business needs.  Common development practice characteristics of 
reuse tyranny that have a detrimental effect on product line development road map-
ping include 

1. gold plating existing features and extending their reach for all the products in 
the product family 

 



 Combining Different Product Line Models 119 

2. introducing only those features that are seen as important by all products - 
this may lead in to a situation where it is hard to get a new feature in for a 
particular product regardless of its added value for that product (and having 
been disregarded for one product that feature’s perceived value for other 
products is also reduced) 

3. de-valuing and de-emphasizing features that are distinguishing and not com-
mon for all products 

4. delaying the introduction of new distinctive features by insisting that they are 
designed and implemented so that they can be used by all products in the 
product line. 

The consequences of this tyranny over time are either that new products are in-
troduced slower than competitors’ or the portfolio of products is insufficiently di-
verse.  In each case the organization’s market share declines.  When this happens a 
knee-jerk reaction is to add new features to existing products without the discipline 
of product line development which in turn leads to a reduction in the percentage of 
products that are supported directly by the reusable components.  A project centric 
approach then emerges and quickly diminishes any competitive advantage gained 
by reuse.  Options thereafter typically are reduced to constructing a highly config-
urable platform with only optional components or adopting compositional approach 
where the individual products are responsible for the integrating reusable compo-
nents.  It is even possible to revert back to “Altmeister”–model, where project 
groups trust only code inherited from their own earlier efforts and go for clone-and-
own reuse. 

2.2   Local Product Optimization 

Within a very broad product line e.g. a mobile phone there are often sub-product lines 
of particular products, each with its own product manager.  Naturally each product 
manager wants to have a successful product where success is often measured by the 
number of products sold.  Even though this seems to be a sensible metric, its sole use 
can lead to a poorly optimized product portfolio.  In search of success a product man-
ager wants to make their product line appealing to as large market segment as possi-
ble.  Several different tactics can be adopted. 

First, the feature set of the product line is broadened to reach beyond the initial 
planned market segment.  Second, product managers will lobby hard to keep new 
features unique to their sub-product line as these are likely to be the key selling 
points and distinguish their product from the pack.  Third, price increases for new 
features are often kept to a minimum for fear of losing market share.  In principle, 
if a target price has been set for a product, increasing the number of features 
should be reflected in the price of the product.  However, product managers work  
 

 



120 J. Savolainen et al. 

around this and typically only features requiring extra hardware cause a target 
price increase.  Software features are often “given away for free” for several  
reasons: they were already in the code base but had not been enabled, or because 
a feature has to be included as part another feature and it can be harder to exclude 
it than to include it, or because it takes little effort to implement one or more 
features. 

2.3   Too Narrow View for Product Line Portfolio Management 

Product line management has a tendency to increase the number of features that can 
be supported across the entire product line.  With product line technology it is possi-
ble to roll out a new feature for all products thus upgrading the entire product portfo-
lio in a very short time.  A good example is the rapid roll-out of color displays across 
the entire Nokia mobile phone product line or the introduction of video capture for all 
Nokia camera phones.  In many cases this can lead to tangible advantage as it rapidly 
raises consumer expectations and can make the competing product lines look old 
fashioned. 

Taking this approach to extremes can lead to a very technical approach to port-
folio management where only common features can find their way into the prod-
uct portfolio.  The principle argument is that it is better to have a set of similar 
products with only small variations which are packaged so that they are distinc-
tive and easy to use rather than a more complex product line, in which some 
products are tailored only to a small group of customers.  Similarity supports 
brand recognition and customers can easily move from one product to another. 
However, the role of market segmentation and identification of unique consumer 
needs is often lost. 

2.4   Problems in Applying a Single Product Line Development Method 

The most simple product line development method is to use a product platform. The 
platform includes all the common software for the product line variants.  The plat-
form is then provided as an integrated software “product”.  This approach works 
well when the commonality between the product line variants is high.  However, 
many product lines are plagued by the near commonality problem [6] i.e. as a prod-
uct line expands and the number of product line variants increases, the number of 
assets common to all or even many products decreases, thus reducing the benefits of 
reuse and making the development of a common product line architecture harder.  
To address this problem, a common solution is to include optional assets in the 
platform, thus allowing the reuse of partially common assets.  However, since the  
 



 Combining Different Product Line Models 121 

platform is always reused as one element many products end up getting features 
they do not need.  This may make using this variant of the platform approach not 
commercially viable. 

In an architecture-centric, asset-based reuse, assets are reused when needed by the 
products.  Being able to choose the required assets allows products to have an optimal 
feature set that matches their requirements.  To create an efficient product line archi-
tecture the ways in which current and future products will vary must be known.  This 
will become difficult when product line scope is continuously expanding [7].  Lack of 
mandatory domain assumptions makes creating a high quality reuse infrastructure a 
difficult task.  When near commonality increases, products are based on widely dif-
ferent sets of components, affecting the ability to optimize feature dependency struc-
tures [8]. 

A compositional product line development has been proposed as a solution for man-
aging product lines with extending scope. In this approach, a product line architecture 
only guarantees that the components can be connected together.  This does not require 
centralized variability management and each product is responsible for creating its own 
configuration of components. In our experience, the compositional development works 
great for certain types of software, notably when a developer of a reusable component 
can correctly estimate customer requirements and architect the component to match 
these requirements.  However, in general this is very hard and based on our experience 
not all types of software are suitable for this approach.  Creating components for  
e.g. user interface software with constantly changing, varying customer requirements  
is often very difficult, whereas making e.g. a WLAN component with standardized 
interfaces is relatively easy. 

3   An Approach for Organizing Product Line Development 

There is an ongoing conflict between the objectives of a product line development 
organization and those of the product organizations.  The goal of product line devel-
opment is to maximize the use of common assets. The product organization aims to 
optimize a product’s characteristics in terms of differentiation in its particular market 
segment.  Balancing these objectives is crucial for all the steps in the product line 
development lifecycle. 

We have identified two different aspects of product differentiation [9]:  

1. Differentiation against the competition: Each product should be competi-
tive against its competitors regardless how competitors’ products are manu-
factured.  In our model this is managed by the product value proposition,  
created for each differentiated feature. 

2. Differentiation within the product portfolio: Each product within a product 
line should be different from each other in ways that are meaningful to the 
customers in each relevant market segment. 



122 J. Savolainen et al. 

There is a difference between the importance of a feature and whether it is a differ-
entiating feature.  A feature is not differentiating if it is considered by the customers 
as something that they expect from all that type of product or all the products that 
belong to a particular market segment.  For all mobile phones “an ability to 
make a phone call” is certainly an important feature, but it will not differentiate 
any mobile phone in the product portfolio.  A related feature “an ability to use 
head phones to make a phone call” used to be differentiating.  Now it is 
common and in most markets does not differentiate. 

Similarly, in a market segment of mobile phones for active people, a feature for 
“tolerance for vibrations and humidity” is an expected feature for mo-
biles phone belonging into this category.  However, a “GPS assisted navigat-
ing” is still a differentiating feature in this market segment.  A clear value proposi-
tion can be made for a product containing this feature. 

We propose a new way to balance reuse and differentiation.  In our approach, 
products can only propose new features if those features are truly differentiating for 
them.  For each differentiating feature a clear value proposition must be made.  These 
value propositions are later validated to verify that non-differentiating features are not 
added to a product by disguising them as differentiating features.  This will help us to 
prevent local product optimization.  The intent is to limit the number of new differen-
tiating features for each product.  The only exception is a new group of features that 
support each other to define a new product category.  Such a group has much more 
value than the sum of these features independently.  Our approach proposes using 
three different product line development methods to create products.  These three 
different methods are applied to their own layers of a product line architecture  Fig 2 
shows that differentiated products in the product differentiation layer are constructed 
by a combination of organized reuse in the product line infrastructure layer and op-
portunistic reuse in the product reuse layer.  Different methods are applied to each 
layer: 

•  the product differentiation layer uses independent product development as 
the way to create new features 

•  the product reuse layer uses centralized variability management to create 
reusable components using traditional product line techniques 

•  the product line infrastructure layer uses a compositional approach to 
scale up to product lines that have a wide scope. 

Table 1 summarises the different methods used at the different layers. 
Products are responsible for identifying and implementing their own differenti-

ating features.  The product line infrastructure is not involved in this development 
unless new supporting functionality is required from the reusable components.  
The product development process allows the realization of features using any 
technique available.  This development is not guided by reuse but by product  
 



 Combining Different Product Line Models 123 

priorities.  If a product’s time to market needs require, the differentiating func-
tionality can be developed in a “dirty” way – even as throw away code.  However, 
a small part of the project incentives should be tied to the reuse of the product 
specific code base.  If the developed code becomes a part of the product reuse 
layer or a part of the product line infrastructure the project and its developers 
should be rewarded. 

 

Fig. 2. Product line development for complex product lines 

 

In this paper, we use the term “layer” loosely.  The separation of the product  
domain and the product line infrastructure domain represents a true layering. The 
product domain is allowed to use the infrastructure domain, but dependencies are not 
allowed in the other direction.  This is not true between the product differentiation 
layer and the product reuse layer.  The usage relationships are still allowed upwards if 
absolutely needed for the product purposes.  However, strict usage use layering is 
encouraged, since it will help reuse this functionality in the later phases. 

 
 



124 J. Savolainen et al. 

Product line infrastructure management can make new reusable assets when they, 
either by their own judgment see it as important, or it is seen as an important feature 
common for many products.  However, this feature cannot be differentiating to any 
product.  Existing components, especially from the product reuse layer, can be mi-
grated to the product line infrastructure domain.  This migration reflects the fact that 
this functionality has become common.  This is a typical evolution in most product 
lines.  A previously differentiating feature may become non-differentiating because 
one or more competitors has added or intends to add the same feature to majority of 
their products. 

The component flow from differentiating product features to reusable product 
functionality and finally to the reuse infrastructure layer creates new reusable com-
ponents.  However, the product line infrastructure is not allowed to create new 
reusable components unless it has realized all feature requests from the products to 
the existing components.  In real product lines, a lot of work is generated by 
changes to the reusable components to allow vertical integration of new product 
functionality. 

The abstraction level of the reusable components may rise over time.  This happens 
when the value in software moves upwards in the whole software stack.  This may 
make creating the lower levels of the software stack uneconomical even using compo-
sitional reuse.  In response an organization may substitute some internal development 
by using open source software or subcontracting.  We recommend that all products 
are allowed to use open source equivalent in place of internally developed infrastruc-
ture components.  Organizations developing internal components have very little 
competition and this brings some.  If many products prefer an external component in 
place of an in-house one, then the in-house development for that component should be 
discontinued. 

This division of responsibilities has clear implications on which product line de-
velopment technique is applied in each layer and what are the key architectural goals 
that should be achieved.  The product differentiation layer has no limitations how the 
software is created.  The main goal is to achieve extremely fast time to market and 
guarantee great user experience for the particular market segment. 

In the product reuse layer, traditional methods for controlled variability manage-
ment apply.  Since each reusable component is developed for a limited set of prod-
ucts, the near commonality does not become a problem.  Here traditional variability 
modeling works well.  The main architectural goals are to separate the reusable and 
the product parts, creating components that are easy to integrate, and enforcing the 
rules of variability for configurability. 

For a product line infrastructure team things are different.  They support poten-
tially thousands or tens of thousands of product variants.  The near commonality 
problem will make using traditional product line management techniques very diffi-
cult.  This also means that there are no definite variability constraints that architects  
 



 Combining Different Product Line Models 125 

can use for their work.  The different products may use infrastructure components 
in very different configurations.  This implies that a key criterion for the architec-
ture is to maximize flexibility and make the components such that it is easy for the 
products to integrate their required set of components.  These goals are similar to 
ones proposed by the composition based product line development.  The only dif-
ference is that the infrastructure team supports only a limited set of product line 
features. 

 

Table 1. Summary of the development appraoches 

Layer PL development Architectural goal 

Product  
differentiation  

Product development 
 
 

Time to market 
Complete product functionality 

Product reuse 
for each set of 
similar products 

Controlled variability 
management  
Product domain  
reference architecture 

Reuse in the domain 
Strong rules on variability 
Flexible architecture 
Time to market 
 

Product line  
infrastructure, 
common for all 
products 

Component oriented 
Composition based 

Maximum flexibility in components 
Composability 
Simple interfaces 
Ability of products to choose only a part 
of the components in the layer 
Common component framework 

 

4   Industrial Evidence and Related Work 

The continuously extending scope of current products lines complicates developing 
products using rigid, centralized variability management.  There is also a growing 
amount of evidence that compositional product line development is possible in many 
domains [10, 11].  However, not all software is naturally aligned for compositional 
software development. 

The battle ground between reference architecture based reuse and product specific 
functionality is most visible in attempts to reuse application functionality.  The Nokia 
S60 platform has systematically expanded its reference architecture to include ab-
stract interfaces to access functionality provided by application [12].  Applications 
often contain functionality that could be used also for other purposes.  For example all  
 

 



126 J. Savolainen et al. 

navigation applications include map management functionality.  A public interface  
defined on the level of a reference architecture can bring this functionality to other 
applications assuming that navigation applications are willing to support it. 

Unfortunately applications are not well defined components and their develop-
ment is not necessarily controlled by the reuse organization.  Applications are 
large and their invocation model does not necessarily support multiple parallel 
invocations. Public common interfaces end up being compromises between differ-
ent interface requirements and applications. Their development is slow and  
applications can conform to them when they consider appropriate.  Pair wise nego-
tiations for application specific interfaces could fulfill the need much faster and 
more precisely. 

Many existing architectures can be easily mapped to our model.  Many banking 
systems have a natural three-layered approach.  On the top, a presentation layer 
contains various web applications, bank staff PC applications, and interfaces to 
other institutions.  These applications are often specific for the particular user 
group.  The middle layer is typically composed of different banking solutions.  
These solutions are intended to be reused as much as possible in the different de-
velopment projects.  Finally, the data layer provides information centric services to 
the upper layers in a very reusable way.  In practice, developing reusable data ser-
vices is an extensive, but realizable task.  Encapsulating data behind well-defined, 
stable interfaces is possible. In fact, this is also the basis of most service oriented 
architecture (SOA) solutions.  By having stateless data services allows large-scale 
reuse in multiple contexts. 

For very large-scale systems, achieving a balance between reuse and differentia-
tion is hard especially for systems requiring vertical integration thought many  
abstraction levels; using just one product line development model, is difficult. Fur-
thermore, trying to change the whole development model of such system to align 
with one methodology is extremely risky.  Our experience in many domains  
indicates that for systems involving software from user specific applications to 
hardware related software is better served by applying multiple product line devel-
opment models. 

Product line research has proposed many different models for organizing reuse 
[13].  We separate most methods into three different approaches as shown in the Ta-
ble 3.  Product platforms separate the reusable part from the application parts.  Our 
approach can be viewed as a variation of the platform approach.  However, in the 
platform model the reuse organization is typically in charge of integration and pro-
vides only one unified interface to its clients.  We employ the compositional approach 
for the product line infrastructure, allowing widely varying number of components to 
be reused by the products. 

In our work we have taken a technical viewpoint on differentiation.  We see dif-
ferentiation based on the needs of the customers that is then converted into the  
 



 Combining Different Product Line Models 127 

characteristics of the products.  However, it is possible to differentiate even if there  
is no real difference between the products.  Impressions of difference, marketing, 
branding and many other factors can equally provide differentiation and thus com-
petitive advantage [18].  We acknowledge the need for marketing techniques to 
enhance differentiation.  Our approach is complementary to non-technical means to 
achieve differentiation. 

 

Table 2. Related work and potential problems in complex product lines 

 
Research topic Studies Problems in complex product lines 

Platform  
development 

DX200[14] Near commonality leading to very fat or very 
thin platform 
Stability of the platform interface 
Integration effort 
Long implementation cycle 
 

Centralized  
variability  
management 

FODA [15] 
FORM [16] 
PULSE [17] 
… 

Near commonality 
High complexity for large product lines 
Stress of dependency management 
 

Compositional Product  
populations [10]

Not suitable for the whole software stack 
Very difficult for component developers 
 

 

5   Conclusions 

In this paper, we have proposed a practical approach for balancing needs for dif-
ferentiation and reuse in complex product lines.  It is based on practical knowledge 
and experience obtained when being involved in the development of many soft-
ware product lines.  We see our method as a combination of previously proposed 
approaches.  We apply these techniques for real products lines, in a way, that al-
lows them to incrementally move towards a better balance between the reuse and 
differentiation.  Our intent is to help practitioners manage their product lines and 
identify important industrial considerations for researchers.  Our approach is not 
about changing the basis of product line development nor does it really require 
huge changes to the traditional product line development models.  We suggest 
using multiple product line development methods when creating a single product 
line.  Products should focus on product requirements, but for each new feature a 
clear value proposition must be made.  A reuse organization’s first priority is to  
 



128 J. Savolainen et al. 

serve the needs of the products, but with some time allocated to identifying sets of 
common products and create new reusable components for these.  The product line 
infrastructure team should focus on creating a set of well-defined high reusable 
components. 

References 

[1] McLure, C.: Software Reuse Techniques - Adding Reuse to the Systems Development 
Process. Prentice Hall, New Jersey (1997) 

[2] Lim, W.C.: Managing Software Reuse - A Comprehensive Guide to Strategically Reen-
gineering the Organization for Reusable Components. Prentice-Hall, New Jersey (1998) 

[3] OMG, Reusable Asset Specification, 05-11-02, Version 2.2 (2005) 
[4] Jacobson, I., Griss, M., Jonsson, P.: Software Reuse - Architecture, Process and Organi-

zation for Business Success. Addison-Wesley, Reading (1997) 
[5] Porter, M.: Competitive Advantage: Creating and Sustaining Superior Performance. First 

Free Press Export Edition ed., Free Press, New York (2004) 
[6] Lutz, R.R.: Toward Safe Reuse of Product Family Specifications. In: Proceedings of the 

1999 Symposium on Software Reusability (SSR 1999), pp. 17–26. ACM Press, New 
York (1999) 

[7] Bosch, J.: The challenges of broadening the scope of software product families. Commu-
nications of the ACM 49(12), 41–44 (2006) 

[8] Savolainen, J., Oliver, I., Myllärniemi, V., Männistö, T.: Analyzing and Re-structuring 
Product Line Dependencies. In: Computer Software & Applications Conference, pp. 569–
572. IEEE, Los Alamitos (2007) 

[9] Savolainen, J., Kauppinen, M., Männistö, T.: Identifying Key Requirements for a New 
Product Line. In: 14th Asia-Pacific Software Engineering Conference, pp. 478–485. 
IEEE, Los Alamitos (2007) 

[10] van Ommering, R.: Software Reuse in Product Populations. IEEE Transactions on Soft-
ware Engineering 31(7), 537–550 (2005) 

[11] van Ommering, R., Bosch, J.: Widening the scope of software product lines - from varia-
tion to composition. In: Software Product Line Conference, pp. 328–347. Springer, Hei-
delberg (2002) 

[12] Bosch, J.: Software Product Families in Nokia. In: Software Product Lines Conference 
(SPLC 2005), pp. 2–6. Springer, Heidelberg (2005) 

[13] Bosch, J.: Software product lines: organizational alternatives. In: 23rd International Con-
ference on Software Engineering, pp. 91–100 (2001) 

[14] Ylä-Rotiala, A.: How to convince the management. In: Workshop on Software Reuse, 
WISR7 

[15] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, USA, Technical Report CMU/SEI-90-TR-21 
(1990) 

[16] Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. Software, 
IEEE 19(4), 58–65 (2002) 

 



 Combining Different Product Line Models 129 

[17] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D., 
Paech, B., Wust, J., Zettel, J.: Component-based Product Line Engineering with UML. 
Addison-Wesley, London (2002) 

[18] Trout, J.: Differentiate or Die - Survival in Our Era of Killer Competition. Wiley, New 
York (2000) 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 130–141, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Integrating Component and Product Lines Technologies 

Elder Cirilo1, Uirá Kulesza2,3, Roberta Coelho1,  
Carlos J.P. de Lucena1, and Arndt von Staa1 

1 PUC-Rio, Computer Science Department, Rio de Janeiro, Brazil 
{ecirilo,roberta,lucena,arndt}@inf.puc-rio.br 

2 Recife Center for Advanced Studies and Systems – C.E.S.A.R., Recife, Brazil  
uira@cesar.org.br 

3 CITI/DI/FCT, New University of Lisbon, Lisboa, Portugal 

Abstract. In this paper, we explore the integration of product line and compo-
nent technologies in the context of the product derivation process. In particular, 
we propose new extensions to our existing model-based product derivation tool, 
called GenArch, in order to address the new abstractions and mechanisms pro-
vided by the Spring and OSGi component models. The GenArch extensions en-
able the automatic instantiation of product lines and applications - implemented 
using these component technologies. Moreover, it also enables different levels 
of customization, from fine-grained configuration of component properties to 
the automatic selection of components that will compose the final product.  

1   Introduction 

A software product line (SPL) [5] can be seen as a system family that addresses a spe-
cific market segment. A system family [10] is a set of programs that shares common 
functionalities and maintain specific functionalities that vary according to specific sys-
tems being considered. Software product lines and system families are typically speci-
fied, modeled and implemented in terms of common and variable features. A feature 
[13] is a system property or functionality that is relevant to some stakeholder and is used 
to capture commonalities or discriminate among systems in SPLs. 

Many approaches for SPL development [21,5,6,10] propose the definition of an ar-
chitecture which comprises their common and variable features. This architecture is 
typically defined in a process called domain engineering. Different technologies can 
be adopted to implement the code artifacts of SPLs architectures, for instance: object-
oriented frameworks and design patterns [8,3,9], aspect-oriented programming [1,15], 
feature-oriented programming [18], conditional compilation [1] and code generation 
[6]. Each one of them brings benefits and drawbacks to the modularization of com-
mon and variable features (variabilities) of SPL. Therefore, it is common to combine 
two or more of these technologies to implement different code assets of typical SPL 
architectures.  

In the application engineering stage of SPL development [6], the core assets pro-
duced during the domain engineering stage [6] are composed and integrated to generate 
an instance (product) of the SPL architecture. This process is also known as product 
derivation [7]. Recent proposed approaches, such as Generative Programming [6] and 



 Integrating Component and Product Lines Technologies 131 

Software Factories [10] motivate the definition of mechanisms to support automatic 
product derivations. Such mechanisms can improve the productivity and quality of the 
derivation process. Domain-specific languages (DSLs) and code generators are the main 
technologies adopted by them. Several product derivation tools based on the feature 
model [13] or DSLs [6] have already been used in industry.  

Over the last years, new component infrastructure technologies have been proposed. 
The main goal of them is to offer a unified model to allow the adequate management 
(i.e., assembling, adapting and connecting) of components and their configuration. Two 
important examples of such technologies based on Java platform are Spring and OSGi. 
The Spring framework [19] is a widely adopted Java/J2EE application framework. It 
offers a model to build applications as a collection of simple components (called beans) 
which can be connected or customized using dependency injection and aspect-oriented 
technologies. The OSGi [16] technology provides an infrastructure to manage the life-
cycle of application components. The OSGi applications are structured as a set of bun-
dles [16] - a bundle represents an application component that provides services to the 
end-user or other components. In the context of SPL development, these component 
infrastructure technologies can be combined with the programming techniques men-
tioned above to allow a better management of the SPL features.  

This paper explores the integration of product line and component technologies in the 
context of the product derivation process. In particular, we propose new extensions to 
our existing model-based product derivation tool, called GenArch [4], in order to ad-
dress the abstractions and mechanisms provided by the Spring and OSGi component 
models. The proposed extensions enable the automatic instantiation of product lines and 
applications implemented using these mainstream component technologies. Moreover, 
the GenArch extensions also provide different levels of customization from fine-grained 
configuration of component properties to the automatic selection of components that 
will compose the final product generated.  

The remainder of this paper is structured as follows. Section 2 briefly describes 
GenArch tool in the context of an illustrative product derivation scenario - each subsec-
tion (Sections 2.1 to 2.3) presents one step in the generative approach supported by the 
tool. Section 3 details the GenArch extensions that integrate Spring (Section 3.1) and 
OSGi (Section 3.2) technologies to support automatic product derivation. Section 4 
presents discussions and lessons learned while extending the tool and using it on prod-
uct derivation scenarios. Finally, Section 5 presents our conclusions and directions for 
future work. 

2   GenArch – A Model-Based Derivation Tool  

GenArch [4] is a model-based tool which enables the mainstream software developer 
community to use the concepts and foundations of the SPL approach in the product 
derivation process [7] without the need to understand complex concepts or models 
from existing product derivation tools. This section presents an overview of the 
GenArch through an illustrative example of a product derivation scenario in JUnit 
framework. 



132 E. Cirilo et al. 

2.1   Annotating Java Code with Annotations 

The first step of the domain engineering consists in the creation of a domain model 
which defines which features exist in a specific domain and which of them are man-
datory, optional and alternative features. Our approach starts at the end of the domain 
engineering stage, when the engineers annotates the existing code (classes, interfaces 
and aspects) of SPL architectures using GenArch specific annotations. These annota-
tions map product line features and variabilities, defined in the domain model, to 
implementation elements of the SPL architecture. Two kinds of annotations are sup-
ported by our approach:  

(i) @Feature - this annotation is used to indicate that a particular implementation 
element addresses a specific feature. It also allows to specify the kind of fea-
ture (mandatory, alternative, optional) being implemented and its respective 
feature parent if exists; and 

(ii) @Variability - it indicates that the annotated element represents an extension 
point (e.g. a hotspot framework class) in the SPL architecture.  

Figure 1 shows an example of the use of the GenArch annotations in the context of 
JUnit framework. The TestCase class is a framework hotspot in JUnit that needs to 
be extended in order to create specific test cases. Thus, according to our approach, the 
TestCase class was annotated with two GenArch annotations (see Figure 1). The 
@Feature annotation indicates that this class implements the Test Case feature, 
which is mandatory. This means that every instance of the JUnit framework requires 
the implementation of this class. The @Variability annotation specifies that the Test 
Case is an extension point of the JUnit framework. It represents a hotspot that needs 
to be specialized when creating instances of the framework. Although the Test Case 
is a variation point, it is also as a mandatory feature since all JUnit instances must 
have at least one instance of TestCase class. 

@Feature(name="Test Case",parent="Test Suite", 
     type=FeatureType.mandatory) 
@Variability(type=VariabilityType.hotSpot,feature="Test Case") 
public abstract class TestCase extends Assert implements Test { 
 private String fName; 

[...] 
}  

Fig. 1. TestSuite Class Annotated 

Next subsection shows how GenArch annotations are processed to generate the ini-
tial version of the derivation models. 

2.2   Generating and Refining the Approach Models 

The GenArch approach encompasses three models: (i) the product line implementa-
tion model; (ii) the feature model; and (iii) the configuration model. These models 
must be specified in our approach to enable the automatic derivation of SPL mem-
bers. The product line implementation model defines a visual representation of the 



 Integrating Component and Product Lines Technologies 133 

SPL implementation elements (i.e., classes, aspects, templates, configuration and 
extra files) in order to relate them to feature models. Feature models [6,13] are used 
in our approach to represent the variabilities of SPL architectures. The configuration 
model is responsible for defining the mapping between features and implementation 
elements.  

After the developer annotates the source code, the GenArch tool processes these 
annotations and generates initial versions of the models. The models are automatically 
derived by parsing the directory that contains the implementation elements. In this 
parsing step, each @Feature annotation demands the creation of a new feature in the 
feature model, and the creation of a mapping relationship between the created feature 
and the respective annotated implementation element in the configuration model. The 
GenArch tool also generates code templates based on the @Variability annotation. 
After the generation of the initial versions of GenArch models, the domain engineer 
can refine them - including, modifying or removing any feature, implementation ele-
ment or mapping relationship. 

The JUnit product line implementation model contains all JUnit implementation 
elements and templates. The configuration model specifies the mapping relationships 
between JUnit implementation elements and features from the JUnit feature model. 
Some mapping relationships can be created automatically based on GenArch annota-
tions, such as: (i) the mapping between TestCase class and Test Case feature can be 
created based on the @Feature annotation from the TestCase class (Figure 1); and 
(ii) the mapping between TestCaseTemplate and Test Case feature can be created 
based on the @Variability annotation from the TestCase class (Figure 1). On the 
other hand, the mappings between some components need to be created manually. For 
instance, the mapping between the runner components (awtui, swingui and txtui) and 
runner features (TXT, AWT and Swing). The runner components are responsible to 
starting and tracking the execution of test cases and suites. JUnit provides three alter-
native implementations of test runners: command-line based user interface; an AWT 
based interface; and a Swing based interface. These mapping was not created auto-
matically because it is not possible to annotate Java libraries. 

2.3   Product Derivation Process in GenArch 

The derivation process supported by GenArch, demands the specification of a feature 
model instance (also called a configuration) in which product variabilities are chosen 
and configured. The GenArch tool supports the SPL architecture customization by 
deciding which implementation elements need to be instantiated to constitute the final 
application requested and by customizing classes, aspects or configuration files. Each 
element that must be customized is represented by a template. The customization of 
each template is accomplished by GenArch tool using information collected by the 
feature and product line implementation models. 

The last step of the derivation process in GenArch is characterized by the selection 
of existing implementation elements and the template-based code generation. The 
implementation elements that were selected and generated are then included in a 
source folder of a specific Eclipse Java project. The complete algorithm used by 
GenArch tool can be found in [4, 14]. 



134 E. Cirilo et al. 

 

Fig. 2. Shopping Store Feature Model 

3   Extending GenArch with Component-Based Technologies  

In this section, we present the GenArch extensions that enable the automatic instantia-
tion of product lines (and applications) implemented using Spring and OSGi component 
technologies. We use a web application to illustrate the proposed extensions. The web 
application is a simple shopping store that allows the management of customers’ orders. 
Its main features are: (i) registering customers’ orders; (ii) presenting administration 
reports - such as the number of orders by customer, orders that contain expensive prod-
ucts and list of expensive products; and (iii) logging of application´s operations, data-
base queries, and exceptions thrown inside the application. In this application, we as-
sume that the reports generation and the logging are optional features. Additionally, the 
logging feature also offers two alternative ways of persistence: database and xml files, 
respectively. Figure 2 shows the feature model of this web application. 

The shopping store application is structured according to the Layer pattern [9], fol-
lowing the traditional web architecture of three layers [22]: web (front-end), business 

and data access. It is organized in 
terms of six main components: (i) 
web – it specifies the Java classes 
responsible to process the user web 
requests; (ii) service – defines the 
base business services offered by the 
application; (iii) data – defines the 
classes that implement the database 
access; (iv) reports – aggregates 
the business classes the implement 
the application reports; (v) logging 
– provides different implementations 
of the logging crosscutting feature 
(Query, Exception and Operation); 
and (vi) util – it is composed of the 
utility classes. 

Next subsections illustrate how this web application and its variabilities can be 
automatically instantiated using the GenArch extensions provided to support the 
Spring and OSGi component models. 

3.1   Spring Framework 

Spring [19] is an open-source framework created to address the complexity of Java 
enterprise application development. Spring enables the development through use of 
components, called POJOs (Plain Old Java Objects) [19]. Each POJO contains only 
business logic. The Spring framework is responsible for addressing additional features 
(e.g., transaction, security, logging), which increment the base functionality provided 
by POJOs with characteristics required to build enterprise applications. 

Spring makes it possible to use Java Beans component model to address the design of 
Java based enterprise applications in a flexible way, as opposed to complex component 
models like Enterprise Java Beans [15]. However, the usefulness of Spring is not limited 



 Integrating Component and Product Lines Technologies 135 

to server-side development. Any Java application can benefit from Spring in terms of 
simplicity, testability, and loose coupling. The simplicity and loose coupling is reached 
by the inversion of control principle [12] (IoC), also called dependency injection [12], 
and the aspect-oriented container provided by the Spring framework. In the IoC tech-
nique, the objects are passively given their dependencies instead of creating or looking 
for dependent objects for themselves. A component expresses its dependency on other 
components by exposing setter methods or through constructor arguments. Due to this 
approach, Spring components are simpler to write and maintain. The Spring AOP (As-
pect-Oriented Programming) framework provides a flexible solution for addressing 
crosscutting enterprise concerns, such as transaction management, logging and security. 
Spring container uses a XML configuration file to specify the dependency injection on 
application components. This file contains one or more bean definitions which typically 
specify: (i) the class that implements the bean, (ii) the bean properties and (iii) the re-
spective bean dependencies. Additionally, this configuration file also defines which 
aspects will be applied to each bean (component) of the application.  

In this work, we developed an extension to GenArch tool that enables the use of 
Spring technology in the implementation of SPL architectures. It allows the automatic 
instantiation of applications during product derivation by helping the decision of which 
Spring components (beans) will integrate the final product. In our implementation, we 
extend the GenArch product line implementation model to incorporate the Spring Bean 
abstraction. In this new model version, each Java class (a POJO in Spring terminology) 
can be associated with a bean abstraction, which can be related with other beans. Based 
on this description, GenArch can choose which beans will compose the final application 
and automatically generate a specific Spring configuration file for this final application. 

  

(a) Product Line Implementation Model (b) Configuration Model 

Fig. 3. Shopping Store GenArch Models 



136 E. Cirilo et al. 

Figure 3(a) shows the product line implementation model of the shopping store web 
application with some associated Spring beans. The ShoppingStoreFacadeHibernate 
class that implements the Facade design pattern (see Figure 3(a)), is associated with the 
shoppingFacade bean. It means that this class implements a Spring Bean, called  
shoppingFacade. This bean depends on different beans, marked with the Reference 
abstractions in the GenArch implementation model, such as: hibernateTemplate, 
facade, hibernateSessionFactory, pool and facadeService, transaction-
Manager, dataSource. The Spring beans definitions can be created manually or auto-
matically in the product line implementation model. The automatic creation is based on 
the Spring configuration file defined by domain engineers during the SPL implementation. 
The GenArch tool also parses the configuration files while processing the annotations and 
automatically generate the derivation models (Section 2.1). 

The configuration model that incorporates the Spring extension, keeps the 
same characteristics of the GenArch original version (Section 2). The domain engi-
neers must create mapping relationships between the features and the implementa-
tion elements in the configuration model (Figure 3(b)). If a specific Java class, 
which is also a Spring bean, is marked with a @Feature annotation, the mapping 
relationship between that class and the feature specified in the annotation is auto-

matically created in the con-
figuration model. 

Each Spring application con-
figuration file is defined as an 
XPand template [17] in our 
extension. These templates are 
processed by GenArch tool in 
two steps: (i) customization of 
the bean tags; and (ii) choice of 
the beans tags that will compose 
the final application configura-
tion file. Figure 4 shows the 
template used to generate Spring 
configuration file of the shop-
ping store application. During 
the product derivation process, 
this template is processed to 
customize its respective vari-
abilities. For example, the prop-
erty called interceptorNames 
need to be configured in agree-
ment with selected logging 
policies. In this template (lines 
26-32), the Spring AOP Proxy 
Interface, which are responsible 
to intercept methods and weave 
advises, only weave the Excep-
tionAdvise if the feature with 
id exception (line 26) was 

01.«IMPORT br::pucrio::inf:: 
02. les::genarch::models::feature» 
03.«EXTENSION br::pucrio::inf 
04. ::les::genarch::models::Model» 
05.«DEFINE Main FOR Model» 
06. [...] 
07. <beans> 
08.<bean id="shoppingFacade"  
09.  class=" shopping.store.data 
10.  .ShoppingStoreFacadeHibernate"> 
11. 
12. <property name="template"> 
13. <ref bean="hibernateTemplate" /> 
14. </property> 
15. </bean> 
16. [...] 
17. <bean id="facadeService"  
18. class="org.springframework. 
19. aop.framework.ProxyFactoryBean"> 
20. <property name="proxyInterfaces"> 
21. <value>shopping.store. 
22. services.ShoppingStoreFacade</value> 
23. </property> 
24. <property name="interceptorNames"> 
25. <list> 
26. «LET feature("exception", 
27. featureElements) AS e» 
28. «IF e.isSelected » 
29. <value>ExceptionAdvise</value> 
30. «ENDIF» 
32. «ENDLET» 
33. [...] 
34. </list> 
36. </property> 
37. [...] 
38. </bean> 
39. [...] 
28. </beans> 

Fig. 4. Spring Configuration File Template 



 Integrating Component and Product Lines Technologies 137 

selected (line 28). After the previous configuration, the GenArch chooses, based in the 
feature model instance and the mappings on the configuration model, which Spring beans 
will compose the final application. 

At the end of the derivation process, the Java classes (representing beans) and the 
customized configuration file are then loaded in a specific source folder of an Eclipse 
Java project that represents the product. 

3.2   OSGi Technology 

The Open Services Gateway Initiative (OSGi) [16] is a consortium of approximately 
eighty companies from around the world that collaborate to create a platform and 
infrastructure to enable the deployment of services from wide area networks to local 
networks and devices. The OSGi specifies an open, common architecture to develop, 
deploy and manage services in a coordinated fashion. According to the OSGi specifi-
cation, Java applications are structured into a set of bundles. Each bundle represents 
an application component that provides services to the end-user or other components. 
A bundle is defined as the only entity responsible for deploying Java applications. It is 
typically deployed as a Java .jar archive file that contains, besides other implementa-
tion resources (e.g., classes, aspects, pictures), the manifest file which comprises 
information about the bundle. This information includes the location of a class, called 
the activator, that is called when the installed bundle is started or stopped. The mani-
fest also contains other interesting information, such as package dependencies, used 
and provided services and additional general information about the bundle. 

In the present study, we developed a GenArch extension that enables the customi-
zation and configurable deployment of OSGi bundles through a feature model. Our 
extension enables the customization in two levels: (i) the definition of resources 
(classes, files, etc) that compose the bundles; and (ii) the definition of bundles that 
will be part of the final application.  

Figure 5 shows the product line implementation model of our shopping store case 
study using the OSGi extension developed to GenArch tool. Figure 5(a) shows the 
implementation elements in the traditional view of the product line implementation 
model. This view was already supported in the base version of GenArch (Section 3). 
Figure 5(b) shows the deployment OSGi view of GenArch considering the shopping 
store case study. It specifies the bundles that implement the application or product 
line. The shopping.store.service bundle implements the application facade 
component. It requires two other bundles: (i) shopping.store.data – that imple-
ments the database access; and (ii) shopping.store.logging – that implements 
the logging crosscutting feature. The shopping.store.web bundle implements the 
application web interface. It requires the services implemented by the shop-
ping.store.service and shopping.store.reports bundles. 

The OSGi technology requires the definition of a manifest file (MANIFEST.MF) for 
each bundle of an application. The main information about bundles is described in the 
following properties: Bundle-Name, Require-Bundle, and Export-Package. In our 
OSGi extension, GenArch is responsible for customizing this file during product deriva-
tion in order to include the specification of bundles as part of the final generated appli-
cation. More specifically, these three properties are customized based on information 
provided by the derivation models (feature, configuration and implementation). 



138 E. Cirilo et al. 

  

(a) Implementation Elements (b) Bundles 

Fig. 5. OSGi Product Line Implementation Model 

Two levels of configuration are supported 
by our GenArch OSGi extension. Figure 6 
illustrates these levels by showing the differ-
ent views of the configuration model for an 
OSGi based product line. In the first level, the 
domain engineer can define fine-grained con-
figurations by creating mapping relationships 
of specific implementation elements to any 
feature. Figure 6(a) shows, for example, that 
each aspect of the logging component depends 
on a specific logging optional feature from the 
feature model. The LogQueryListAdvice 
aspect, for example, depends on the Query 
feature. The definition of such mapping rela-
tionships (in the configuration model) enables 
our tool to decide which elements will com-
pose the final bundles of a specific product. 

In the second level, the domain engineer 
can define mapping relationships between 
bundles and any feature. Figure 6(b) illus-
trates a new view provided by the GenArch 
OSGi extension to the configuration model. 
It allows the definition of specific bundles 
of a product line, according to the features 
selected to be included in the product (dur-
ing application engineering). The shop-

ping.store.logging bundle, for example, depends on the occurrence of the 
Logging feature. 

 
(a) Mapping Relationships 

 
(b) Bundles Relationships 

Fig. 6. OSGi Configuration Model 



 Integrating Component and Product Lines Technologies 139 

The information provided by the OSGi configuration model enables the GenArch 
tool to decide which bundles will compose the final product, based on the feature 
selection. During the product derivation, our tool proceeds in the following way to 
generate each bundle of the final product: (i) it creates an Eclipse plug-in project; (ii) 
it loads the selected implementation elements and template generated elements in this 
project; and, finally, (iii) it customizes the Bundle-Name, Require-Bundle and 
Export-Package fields in the OSGi manifest file. The fields of the OSGi manifest 
file are customized based on the information available in the product line implementa-
tion model and feature model instance. These models work as DSLs that provide 
custom information for the template processing. Differently from previous versions of 
GenArch, which demands the derivation of only one Eclipse Java project, the OSGi 
extension generates one Eclipse project for each bundle, because the OSGi implemen-
tation requires the definition of one project per bundle. 

4   Discussions and Lessons Learned 

Integrating Spring and OSGi. Some recent works [20] have emphasized the combined 
adoption of Spring and OSGi as complementary component technologies. While the 
Spring framework offers a flexible and effective component model to manage static 
and more fine-grained component dependencies of both crosscutting and non-
crosscutting services, the OSGi provides a dynamic runtime infrastructure that allows 
the management of components in runtime. The GenArch extensions presented in this 
work already take into consideration the possibilities and benefits for integration of 
both technologies. The developers can create and manipulate a series of Spring beans 
in the product line implementation model, and after that they can assign to a specific 
OSGi bundle the Java classes that implement the Spring beans. Although our tool 
already addresses these scenarios, it has not considered the implementation of the 
Spring OSGi module [20], which is currently under development. This module is 
responsible for providing a smooth integration between Spring and OSGi frameworks 
by allowing an OSGi application to import and export Spring packages and services. 
We are currently investigating this new Spring support to OSGi in order to provide 
support to it in our product derivation tool.  
 
Runtime Customization of Product Lines. Many of the component infrastructure tech-
nologies developed over the last years have emphasized the need to provide support to 
dynamic customization of applications. J2EE technology, for example, enables the 
dynamic deployment of enterprise beans components. The deployment of new com-
ponents or the management (e.g, update or removal) of existing ones is supported by 
means of mechanisms provided by the application servers, such as, JBoss. OSGi tech-
nology also allows flexible dynamic management of components. However, it has not 
been much explored in the context of Java server-side applications. The Spring OSGi 
[20] module is an initiative in this way. The Spring and OSGi extensions to the 
GenArch tool proposed in this work already represent an advance in the use of these 
technologies to implement product lines architectures. They can enable the dynamic 
customization of product lines. However, this customization is accomplished mainly 
based on the product line components. One interesting direction to investigate is to 



140 E. Cirilo et al. 

explore the dynamic customization of product lines based on the feature model. In 
this kind of approach, feature based tools would drive the customizations based on the 
selection of features. The feature selection performed by the application engineer 
would demand the automatic deployment (e.g., removal or updating) of several com-
ponents associated to the selected features.  

5   Conclusions and Future Work  

In this paper, we presented two extensions to a product derivation tool which address 
the integration of Spring and OSGi mainstream component-based technologies. Our 
extensions consider the use of these technologies in the implementation of SPL archi-
tectures by incorporating their abstractions and mechanisms to the derivation models 
adopted by GenArch tool [4]. Automatic mechanisms are used to generate partial 
version of these models based on the specific artifacts (configuration and manifest 
files) and abstractions (beans, aspects, bundles, dependencies, etc) of Spring and 
OSGi technologies. During the product derivation process, the GenArch tool enables 
the automatic instantiation of product lines (or applications implemented using the 
mechanisms available in Spring and OSGi) by selecting and customizing components 
based on a set of selected features. 

As a future work, we intend: (i) to apply and evaluate the proposed extensions in 
the context of complex component based product lines; (ii) to address the support to 
the under development Spring OSGi module; (iii) to investigate the use of feature 
models in the dynamic customization of product lines. 
 
Acknowledgments. The authors are supported by LatinAOSD/Prosul Project - 
CNPq/Brazil. Uirá is also partially supported by European Commission Grant IST-
33710: Aspect-Oriented, Model-Driven Product Line Engineering (AMPLE). 

References 

[1] Alves, V., Matos, P., Cole, L., Borba, P., Ramalho, G.: Extracting and Evolving Mobile 
Games Product Lines. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 
70–81. Springer, Heidelberg (2005) 

[2] Anastasopoulos, M., Muthig, D.: An Evaluation of Aspect-Oriented Programming as a 
Product Line Implementation Technology. In: Bosch, J., Krueger, C. (eds.) ICOIN 2004 
and ICSR 2004. LNCS, vol. 3107, pp. 141–156. Springer, Heidelberg (2004) 

[3] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented 
Software Architecture, A System of Patterns, vol. 1. Wiley, Chichester (1996) 

[4] Cirilo, E., Kulesza, U., Lucena, C.: GenArch: A Model-Based Product Derivation Tool. 
In: Proceedings of Brazilian Symposium on Software Components, Architectures and 
Reuse (SBCARS 2007), Campinas - Brazil (August 2007) 

[5] Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley Professional, Reading (2001) 

[6] Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications. 
Addison-Wesley, Reading (2000) 



 Integrating Component and Product Lines Technologies 141 

[7] Deelstra, S., Sinnema, M., Bosch, J.: Product Derivation in Software Product Families: a 
Case Study. Journal of Systems and Software 74(2), 173–194 (2005) 

[8] Fayad, M., Schmidt, D., Johnson, R.: Building Application Frameworks: Object-Oriented 
Foundations of Framework Design. John Wiley & Sons, Chichester (1999) 

[9] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable 
Object-Oriented Software, vol. 395. Addison-Wesley Longman Publishing Co., Inc., Am-
sterdam (1995) 

[10] Greenfield, J., Short, K.: Software Factories: Assembling Applications with Patterns, 
Frameworks, Models and Tools. John Wiley and Sons, Chichester (2005) 

[11] Harold, E., Means, W.: XML in a Nutshell. O’Reilly, Sebastopol (2004) 
[12] Johnson, R.: Expert One-on-One J2EE Design and Development. Worx (2002) 
[13] Kang, K., et al.: Feature-oriented domain analysis (FODA) feasibility study. Technical 

Report CMU/SEI-90-TR-021, SEI, Pittsburgh, PA (November 1990) 
[14] Kulesza, U.: An Aspect-Oriented Approach to Framework Development, PhD Thesis, 

Computer Science Department (in Portuguese), PUC-Rio, Brazil (April 2007) 
[15] Monson-Haefel, R.: Enterprise JavaBeans. O’Reilly, Sebastopol (2001) 
[16] OSGi, http://www.osgi.org 
[17] openArchitectureWare, http://www.eclipse.org/gmt/oaw/ 
[18] Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation Tech-

nique for Refinements and Collaboration-Based Designs. ACM TOSEM 11(2), 215–255 
(2002) 

[19] Spring Framework, http://www.springframework.org 
[20] Spring OSGi, http://www.springframework.org/osgi 
[21] Weiss, D., Lai, C.: Software Product-Line Engineering: A Family-Based Software Devel-

opment Process. Addison-Wesley Professional, Reading (1999) 
[22] Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Reading 

(2002) 
 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 142–153, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Feature Implementation Modeling Based Product 
Derivation in Software Product Line 

Xin Peng, Liwei Shen, and Wenyun Zhao 

Computer Science and Engineering Department, Fudan University, Shanghai 200433, China 
{pengxin,061021062,wyzhao}@fudan.edu.cn  

Abstract. Although there has been significant research spent on feature model-
ing and application-oriented customization and some effective methods have 
been proposed, product derivation in SPL (Software Product Line) development 
is still a time- and effort-consuming activity due to the complicated mapping 
between feature model and program implementation. In this paper, we propose 
a feature implementation modeling based method for product derivation. In the 
method, feature implementation model is introduced as the intermediate level 
between feature model and program implementation. The feature implementa-
tion model captures feature interactions (including cross-cutting interactions) in 
the finer role level, and help to clarify the complex mapping between feature 
and program implementation. So, feature-driven program-level customization 
and configuration can be enabled by the model and role instantiation. AOP (As-
pect-Oriented Programming) is adopted as the implementation technology for 
product derivation on the program level. Then program-level composition can 
be implemented by aspect weaving to finally achieve the feature-driven product 
derivation. 

1   Introduction 

A fundamental reason for investing in SPL is to minimize the costs of product deriva-
tion [1]. The ideal mode of product derivation is constructing the final product by con-
figuring and tailoring of core assets, following a prescribed process, and complemented 
by application-specific implementation of some parts. Feature-oriented domain re-
quirements modeling points out a possible way to implement the customization-based 
requirement reuse [2]. So, most methods on feature modeling support application-
oriented customization with constraint dependencies (e.g. [2][3]). However, the big gap 
between problem domain and solution domain make it difficult to map customization 
and tailoring on feature model to implementation program level. 

The relation between problem and solution space is a many-to-many relation 
([2][4][5]). Some intermediate mechanisms between features and components are 
proposed to improve feature-based architecture design and product derivation, e.g. 
responsibilities in [2] and component role in [4]. On the other hand, AOP (Aspect-
Oriented Programming) as SPL implementation technology has attracted much atten-
tion (e.g. [6][7]) due to its enhancement on crosscutting features, adaptability and 
configurability. These concepts can help understand the reality of feature based de-
sign and implementation and provide guidance in practice. However, we still need 



 Feature Implementation Modeling Based Product Derivation in SPL 143 

systematic and practical methods for feature oriented product derivation, which 
should provide some automatic mechanism and tool support. 

In this paper, we propose a feature implementation modeling based product deriva-
tion method for SPL development. Feature implementation model, an intermediate 
level between feature and program implementation, is introduced to link feature vari-
ability and program variability. In the model, each feature is logically implemented by 
some roles and interactions between roles are also modeled. Roles are instantiated by 
elements in the base programs or variability-related programs. AOP is adopted to 
implement the program-level composition for role interactions. 

The remainder of this paper is organized as follows. Section 2 analyzes the prob-
lem of product derivation in SPL development. Feature implementation model and 
product derivation are introduced in section 3 and 4 respectively. Then a case study 
and tool support for the method are presented in section 5. Related works are dis-
cussed in section 6. Finally, we draw our conclusions with discussion in section 7. 

2   Problem of Product Derivation in Software Product Line 

In this section, we will analyze problems in product derivation with a simplified ex-
ample of library management domain. The feature model is showed in figure 1 ac-
cording to the ontology-based meta-model proposed in our previous work [3], in 
which decomposition relations are presented and lines with hollow circle represent 
optional elements. In the system, BookAdd, Search&Browse, BorrowBook and Re-
turnBook are basic functions. BookPicShow (show the book picture when browsing), 
BorrowControl (control book borrowing by prescribed policy) and BookLog (log 
when a book is added, borrowed or returned) are optional functions. Even if all the 
features are implemented, we will still find it hard to derive customized products from 
these core assets. Usually we will implement some business classes and several visual 
forms for book adding, browsing, borrowing and returning. Then we can see the 
bound of BookPicShow usually needs both an image container and a code segment of 
image data fetching to be added. Furthermore, there is interaction between 
Search&Browse and BookPicShow: BookPicShow should be activated when a book is 
searched and showed in the browsing form. 

The interaction can be more complicated. The optional BorrowControl can even 
change the execution of base programs: if BorrowControl is bound, it will interrupt 
the execution of BorrowBook if it doesn’t meet prescribed policy. Furthermore, fea-
ture interaction can even affects multiple features, e.g. BookLog affects BookAdd, 
BorrowBook and ReturnBook. Besides feature-level variability, there is also variabil-
ity on design and program level, e.g. fetching image data from database or file system 
if BookPicShow is bound. This kind of variability is not visible on the feature level, 
but it will affect the product derivation also. 

From this case, we can see problems in product derivation include: feature imple-
mentation scatters and bound of a feature may need adaptations on multiple program 
units; complex interactions between features and even crosscutting feature interac-
tions; variability on multiple levels (requirement, design, etc). The root of the problem 
is the complicated mapping between feature and program implementation. In our 
method, role based feature implementation model is introduced to improve the situa-
tion by clarifying the mapping and feature interactions. 



144 X. Peng, L. Shen, and W. Zhao 

Library Management

BorrowBook
BookAdd

ReturnBook
BorrowControl

BookLog

BookPicShow

Search&Browse

xsd:bool
ComplexCondSpt 

Legend: Action Term or rdf :datatype FacetHasElement  

Fig. 1. Feature model of simplified library management domain 

3   Feature Implementation Model 

Feature implementation model is the logical design model for the implementation of 
features. It specifies all the necessary implementation roles for each feature and instanti-
ates roles to program elements (i.e. class, method, etc), so as to map feature-level cus-
tomization to program-level implementation. An SPL consists of a base implementation 
(mandatory features) and a number of variability-related features, and a product can be 
derived by selecting an arbitrary number of these features and combining with the base 
implementation [4]. In our feature implementation model, there are also base roles and 
variability-related roles. The latter are to be selected and configured to implement bound 
variability-related features, while the former provide linking points for variability-
related programs to be composed into the product. 

Abstract Role

inherit

Program Unit
instantiation

1..*

1..*

0..*

Program Level

Role Level

Facet0..*

implemented by
Feature Level

configDepend
interaction

Role
type: {ope, res}

isOptional : bool
Action

isOptional: bool
Concrete Role

 

Fig. 2. Meta-model of the feature implementation model 

3.1   Feature Implementation Meta-model 

Meta-model of the feature implementation model is presented in figure 2, which is 
extended from our previous ontology-based feature model [3]. In the feature model, 
Action, representing business operations, is the basic element. Facet is introduced to 
provide more business details for actions, which can be construed as perspectives, 
viewpoints, or dimensions of precise description for Action [3]. Each action is im-
plemented by one or more roles. A role is a logical unit, a responsibility which 
should be taken by program fragment for feature implementation. The concept of 
 
 



 Feature Implementation Modeling Based Product Derivation in SPL 145 

role here is similar to the responsibility in [2] and the role in [4]. Two kinds of roles 
are distinguished, one is operational role (type=ope), the other is resource role 
(type=res). An operational role is a functional segment, e.g. fetching image data for 
show. Resource role represents specific internal or external entity necessary for the 
implementation of a feature, e.g. an image container to show picture. Resource role in 
our method is similar to resource container proposed in [2], which can passively ac-
cept features’ requests for resource storing, querying, and retrieving, and play the role 
of a medium of interaction between features. 

A series of roles can interact with each other to implement a feature (mostly Action 
in our model) together. For example, from figure 3 we can see BookPicShow can be 
implemented by three roles. ImageContainer is an image container for picture show, 
ImageFetch is to fetch image data from database or file system, and PicShowControl 
takes the responsibility of controlling image fetching and showing. There are also 
interactions between roles from different features, e.g. PicShowControl is activated by 
role from Search&Browse to fetch and show the picture. Then the feature BookPic-
Show can be implemented by role interactions within it and across the role boundary. 
Role interaction clarifies how a user-visible feature is implemented by several logical 
sides and guides the program-level customization and composition. In our method, 
five kinds of interactions are identified as in table 1, in which interaction point de-
notes a role activates another role before or after execution of itself. 

Table 1. Interactions between roles 

Interaction Description Interaction Point 

Involve 
An operational role activates another operational role in a 
synchronous mode and makes it a part of the host operation. 

Before or After 

Inform 
An operational role informs another operational role to 
activate in an asynchronous mode. 

Before or After 

Determine 
Execution result of an operational role can determine the 
execution of another operational role, including whether 
execute or not and choosing a variant from several choices. 

N/A 

Access 
An operational role reads or writes a resource role, or both, 
to fulfill its responsibility in specific feature implementation. N/A 

Introduce 
A resource role is introduced into implementation unit of 
another operational role to be a sub-element. 

N/A 

Among the five kinds of interactions, the first three are between two operational 
roles, the last two between an operational role and a resource role. All these five kinds 
of interactions are embodied in figure 3. For example, ImageFetch is involved in 
PicShowControl, BookChange will inform BookLog to activate, BorrowControl (if 
bound) will determine the execution of BorrowBook, PicShowControl will access 
ImageContainer to show the image, and ImageContainer (if bound) will be intro-
duced as an element of BookSearch. Interactions can occur between roles from differ-
ent features, e.g. the interaction between BookSearch and PicShowControl in figure 3. 
Inter-feature role interactions are the embodiment of feature interactions and clarify 
the interactions in a finer granularity. It should be emphasized that not all the modeled 
role interactions will appear in a final product, since some roles reside in optional or 
 



146 X. Peng, L. Shen, and W. Zhao 

variable features, e.g. Determine relation between BorrowControl and BorrowBook will 
not take effect if the feature BorrowControl is not bound. However, this interaction can 
help to compose the behaviors of BorrowControl and BorrowBook in the right way once 
BorrowControl is bound. 

In some cases, role interactions will occur between a role and a set of roles with 
common characteristics. These interactions usually crosscut multiple parts of a sys-
tem. For example, BookLog will be informed to activate by all the changes on books, 
e.g. BorrowBook, ReturnBook, etc. So, abstract role is introduced to denote a class of 
roles and provide expressions for crosscutting interactions. Abstract role does not 
reside in any feature and will be inherited by other concrete roles. For example, in 
figure 3, if the optional BookLog is bound, it will be attached to both BorrowBook and 
ReturnBook. An abstract role also has its role type (operational role or resource role), 
and role inheritance can only occur between roles with the same role type. 

<<feature: BorrowControl>>

BorrowControl Determine

<<feature: Search&Browse>>
BookSearch Involve

BookChange

Legend: Abstract RoleOperational Role Resource Role

Role Interaction Inherit Property

Inform
<<feature: ReturnBook>>

ReturnBook

<<feature: BorrowBook>>
BorrowBook

<<feature: BookLog>>
BookLog

ConditionSet

<<feature: BookPicShow>>

ImageFetch

PicShowControl

ImageContainer

Access Involve
FetchMode

DB
File

IntroduceInvolve

Context: ReaderCode , BookNo, Operation

 

Fig. 3. Segment of feature implementation model for the library management domain 

3.2   Variability in Feature Implementation Model 

Role-level implementation for optional features is plain: roles for an optional feature 
are involved in the system or not according to whether the feature is bound. Similarly, 
as for specialization, each variant feature has its own role design and related roles are 
involved or not according to whether the variant is bound. In these cases, no addi-
tional variability should be considered. Our feature model provides the mechanism of 
partial variability for features, i.e. variable facet-value in our feature model, e.g. the 
facet ComplexCondSpt defined on the feature Search&Browse in figure 1. In this 
case, role-level variability should be modeled to support it. On the other hand, feature 
implementation model can also introduce new design-level variations for different 
implementation choices. For example, ImageFetch contains a design-level variation 
of fetching mode, i.e. read the image data from DB or file system. In our method, 
role-level variability is supported by optional roles and role properties. Optional roles 
should be further evaluated to be bound or removed even if the feature it resides in is 
bound. Role properties provide a kind of partial variability for roles, e.g. the property 
FetchMode. Different property-values mean different implementation modes in pro-
gram level, e.g. different instantiations or parameters. 



 Feature Implementation Modeling Based Product Derivation in SPL 147 

As mentioned above, some role-level variations are related to feature-level, others 
are completely design-level considerations. Example of the former is the optional role 
ConditionSet, which is designed to support the variable facet ComplexCondSpt. So, 
there exist configuration dependencies between feature variations and role variations. 
The dependency is denoted by the relation configDepend between action facets and 
roles in our method (see figure 2). It is similar to configuration dependency on Facet-
Value in our feature model [3], and the difference is that dependency here is between 
feature and role. An atomic feature-role dependency can be expressed as:  

(action, facet=term)→(role, [property=value]), 

in which “facet=term” means a facet value assumption for action, optional “prop-
erty=value” is a property value assumption for role (absence means configuration 
depending on bound of the role). Then the feature-driven configuration dependency 
on ConditionSet can be expressed as (Search&Browse, ComplexCondSpt=true)→
(ConditionSet). 

3.3   Design Consideration in Feature Implementation Model 

Different designers can have different implementation model designs for the same 
feature model. However, there still some guidance. Role interaction is to provide 
direct guidance for program-level customization and composition. Intuitively, if dif-
ferent parts of a role are involved in interactions with different roles, usually they 
should be separated as several roles to enable program-level composition. Role granu-
larity should also be carefully designed to maximize commonalities and localize 
variations. For example, the role design for the feature BookPicShow separates vari-
able role ImageFetch from PicShowControl to localize the variability. If ImageFetch 
has no variability, it can be merged with PicShowControl for simplicity. 

3.4   Role Instantiation and Role Context 

From figure 2, we can see each concrete role is instantiated by a program unit. Program 
unit here can be a class or method in an object-oriented language. These program units 
correspond to roles with different types (ope or res), different interactions and different 
variability (mandatory, optional or variable). Operational roles are instantiated by meth-
ods, in which variability-related roles are implemented by separated method segments to 
be composed into the base program. Instantiation of determining role can determine the 
execution of other methods, so return value and the policy (specifying what return value 
corresponds to what decision) are also needed. Resource roles are instantiated by classes, 
e.g. ImageContainer in figure 3 can be instantiated by a Java Canvas class. As for re-
source roles introduced by other roles, additional initialization code is also needed to 
initialize it in the host class, e.g. create a Canvas object, and set its size and position, etc. 

In program-level composition, necessary mechanisms of data sharing and transfer 
should also be established between interacting program units. In our method, role 
context is introduced to model inter-role interaction information. Role context is run-
time information about the role, which can be accessed by other roles in interactions. 
For example, ReaderCode, BookNo and Operation are identified as the context of 
BookChange, representing code of the current reader, book number and the current 



148 X. Peng, L. Shen, and W. Zhao 

operation in an execution of BookChange. In this example, BorrowBook and Retu-
renBook will inherit the context, since they are specialized roles of BookChange. In 
role instantiation, each role context should be instantiated to enable runtime context 
access. On the other hand, role property should also be instantiated to make the role-
level customization implemented on the program-level.  

The entire schema of role instantiation is presented in figure 4. We can see a role 
can have multiple instantiations, e.g. Role 4, and a property-value of it can determine 
which implementation is bound in product derivation. Other properties can be mapped 
to parameters of the implementation method, and then role-level customization can be 
embodied by program-level parameters. Role context is instantiated by constants or 
runtime expressions. Constant context is applicable for several roles inheriting the 
same abstract role. For example, the context Operation of BookChange provides de-
scription for the current operation to be recorded in the operation log, and can be 
instantiated as constant strings “borrow book” and “return book” in the specialized 
roles BorrowBook and ReturenBook respectively. Runtime expression can provide 
runtime context for other interacting roles, e.g. ReaderCode and BookNo. It can be 
any legal expressions in the runtime context of the method, e.g. “getCurrent-
BookNo()” (get the book number by a method call) or “bookNo” (get the book num-
ber by an object property). These expressions can be used in the glue code to share the 
context with interacting program units. 

There are also roles with application-specific implementation, e.g. role BorrowCon-
trol may be different in each product. These roles can be instantiated by method or class 
declaration, which can be implemented by application engineers. It should be empha-
sized that role property and context are different mechanisms for product derivation. 
Role property is determined in role-level customization and affects the implementation 
of the same role, while role context is declared for references of other interacting roles 
and the value is usually determined at runtime. 

Role 1 Class
Method 1
Method 2

Role Level Program Level

Separate method

Role 4

Role 2

Separate method 3
(Instantiation 1)

Role 3

Resource Role

Abstract Role
Operational Role

Instantiation

Separate method 4
(Instantiation 2)

?

Context

Properties
Param 1
Param 2

Runtime Context

Param 3

Context

 

Fig. 4. Role instantiation schema 

3.5   Role-Level Customization 

Product derivation is first driven by application requirement, i.e. feature-level cus-
tomization in SPL development. Feature customization is guided and verified by 
feature constraints, which is well discussed in works on feature modeling (e.g. [2][3]). 
 



 Feature Implementation Modeling Based Product Derivation in SPL 149 

After feature customization, role-level customization can be considered for those roles 
residing in bound features. Feature-role dependency introduced in 3.2 will help to 
achieve the feature-driven role customization. Each feature-role dependency like 
“(action, facet=term)→(role, [property=value])” will be applied to determine the 
property-value of a role or bound of an optional role. If no inconsistency emerges, 
role-level refinement ends. Then other pending role variations, which are additional 
variability introduced in logical design, will be considered. For example, FetchModel 
defined in figure 3 will be determined to be File or DB completely from the design 
consideration (whether to use database or not). 

4   Program-Level Customization and Composition 

After role-level customization, variability-related program units can be selected and 
configured according to the role instantiation. If a role corresponds to more than one 
program unit, its property values are used to determine which instantiation is chosen. 
Program configuration is to map customized property values to program parameters, 
which will be transferred to the program unit by the glue code. After that, variability-
related program units will be composed with each other and base programs by aspect 
weaving. In our implementation, AspectJ [8] is adopted to implement the program 
composition, so related concepts such as advice, join point are used. 

Table 2. Composition rules for various role interactions 

Interaction Advice Glue Code 
Involve before or after execution Context acquisition, parameter preparation and transfer 

Inform before or after execution 
Context acquisition, parameter preparation and transfer; 
Startup a new thread to execute the informed program 

Determine around call 
Context acquisition, parameter preparation and transfer; 
Determine whether proceed the method or not by return 
value of the determining method 

Access N/A 
Prepare the resource reference expression and transfer to 
the call to the accessing method 

Introduce 
resource: Introduce  
initialization: after execution 

Embodied in the initialization code 

4.1   Composition with Base Programs 

Composition rules for various interaction types are listed in table 2. In each case, vari-
ability-related program unit is woven into base program. Involve interaction weaves the 
involved program by a before or after execution advice according to the interaction 
point. Automatically generated glue code included in the advice will acquire the con-
text, prepare the parameters and transfer them to the involved method. Inform interac-
tion is similarly treated, but a new thread will be started up to execute the informed 
program in an asynchronous mode. Both Involve and Inform interactions are imple-
mented on the execution level. Determine interaction is implemented by around call 
advice. It is implemented on the call level, so that it can control other woven programs. 
Implementation of Introduce interaction includes two parts: introduce the resource 



150 X. Peng, L. Shen, and W. Zhao 

object as a property of the host class; weave the initialization code into the constructor 
of the host class. Interaction with abstract role is cross-cutting, e.g. each role inherited 
from BookChange should inform BookLog and provide context information (Reader-
Code, BookNo and Operation) for logging if it is bound. In this case, weaving and glue 
code will be generated for program units corresponding to all the concrete roles, each 
with different context information. 

4.2   Composition between Variability-Related Programs 

Composition between variability-related programs implements feature-dimension com-
position. That is program units corresponding to roles of the same feature are composed 
together to implement the feature, even if they are woven into different base classes. 
Generally, interactions between variability-related roles fall into two categories. One is 
the Access interaction between an operational role and a resource role, e.g. interaction 
between PicShowControl and ImageContainer in figure 3. In this case, the resource role 
may have another Introduce interaction with a base role. Programs for the two roles 
may be woven into different base classes, so a reference chain between them should be 
established to enable implementation of the Access interaction. It can be achieved by 
navigation between objects of the two classes, since the resource object can be accessed 
from its host by a get method added in the weaving (see table 2). So when instantiations 
of two roles with Access interaction are woven into two different classes, a navigation 
expression from the runtime context of the operational role will be requested from the 
developer, e.g. “currentBook.getAuthor()”. The implementation method of accessing 
role can declare the resource object as a parameter. Then, in composition, the resource 
reference expression can be generated with the navigation expression and transferred to 
calls to the accessing method (see table 2). 

The other category is interaction between two operational roles, e.g. interaction be-
tween PicShowControl and ImageFetch in figure 3. In this case, at most one of them 
may have interaction with base roles, so interaction between their instantiation can be 
fixed in the program. For example, invocation to ImageFetch can be included in the 
PicShowControl implementation, but the implementation version for ImageFetch may 
be different since it has more than one instantiation (with the same method signature) 
due to the role variability of FetchMode. 

4.3   Class-Dimension Coordination 

In program composition, instantiations of multiple variability-related roles may be 
woven into the same base method. These advices should be well coordinated to elimi-
nate possible conflicts. In our method, two kinds of coordination are provided. One is 
for multiple determinations, e.g. BorrowBook may be determined by a new role 
ReaderCheck (check the account status) besides BorrowControl. In this case, multiple 
determinations are imposed on the same base method, so these determination rules can 
combined in a conjunctive mode. The other is coordination for determination and other 
interactions. In this case, determination is on the domination position, which can deter-
mine not only the base method, but also other interaction advices. This domination is 
implemented by different weaving policies: Determine is woven on the call level, while 
Involve and Inform are on the execution level. 



 Feature Implementation Modeling Based Product Derivation in SPL 151 

5   Tool Support and Case Study 

The method proposed in this paper has been implemented in our prototype of feature-
driven product derivation tool. It is integrated with OntoFeature, the feature modeling 
tool developed in our previous work [3], by importing and capturing the feature list 
and dependencies. The tool provides editing space for each feature, supports the role 
customization and program-level composition by invoking the AspectJ Compiler. 

Now we will demonstrate a case study of the BookPicShow implementation of the 
library management showed in figure 3. We can see the resource role ImageContainer 
has an introduce interaction with a base role, so it is instantiated by both an imple-
mentation class and a code segment of initialization. In this example, ImageContainer 
is instantiated by the Canvas class and the initialization code is to set the size and 
listener. Then, when BookPicShow is bound in the product derivation, the role Im-
ageContainer can be composed by an automatically generated aspect, which declares 
a Canvas object as the inter-type of BookForm (the class which instantiation method 
of BookSearch resides in) and adds the initialization code after the execution of the 
constructor of BookForm (see the left part of figure 5). 

 

Fig. 5. Aspect glue code generated 

On the other hand, there is an Access interaction between PicShowControl and Im-
ageContainer, so a navigation expression should be given to enable the interaction. In 
this example, both of them are woven into the same class BookForm, since instantia-
tion method of BookSearch also resides in it. So, the navigation expression is an 
empty string, because they are in the context of the same class. In our example, Pic-
ShowControl is composed after searchBook (instantiation method for BookSearch) by 
an aspect which fetches picture of searched book and set it into ImageContainer (see 
the right part of figure 5). 

After feature- and role-level customization, aspects for all the bound variability-
related roles can be automatically generated. Then they can be compiled together with 



152 X. Peng, L. Shen, and W. Zhao 

all the base programs and variability-related instantiation programs by invoking As-
pectJ compiler (by ajc command) and a product is derived. Figure 6 shows the snap-
shots of the book borrow form before and after the binding of PicShowControl. 

     

Fig. 6. Book borrow form before and after the binding of PicShowControl 

6   Related Works 

In SPL researches, there has been significant effort spent on the early steps, including 
scope definition, domain and feature modeling and architectural design, but less attention 
has been paid to the implementation level [6]. Deelstra et al. [1] analyze the problems 
during product derivation and point out that complexity of the SPL in terms of the number 
of variation points and variants and implicit properties (e.g., dependencies) of variation 
points and variants are the two core issues. Deursen et al. [5] propose a source-level pack-
ages based method for product derivation. In the method, product is derived by packaging 
source-code components according to feature selections. This source code based method 
has no explicit model for feature interaction and feature-driven customization. 

Jansen et al. [4] propose a feature based method for product derivation. Their 
method also introduces role model to help relate features with components, and then 
products can be derived by selecting a number of base components and features based 
on their composition algorithm. In the method, role interactions are not explicitly 
modeled and the composition is implemented by inheritance in object-oriented lan-
guage (both base component and role are implanted by classes). Our method provides 
comprehensive support for role interaction modeling and implementation (by prop-
erty, context, etc), and adopts a lightweight and flexible mechanism for product com-
position by aspect weaving. 

Some researchers have noticed the potential of AOP as a SPL implementation tech-
nology. Anastasopoulos et al. [6] performed a case study to evaluate AOP as a SPL 
implementation technology, and drew the conclusion that AOP is especially suitable for 
variability across several components and whether AOP is suitable for other variability 
still need further study. Lee et al. [7] propose to combine feature analysis and AOP to 
enhance reusability, adaptability, and configurability of product line assets. They pro-
vide some good guidelines for AOP based SPL assets development by considering 
commonality and variability, dependency and binding time. However, the method lacks 
an intermediate level to clarify the connection between feature and program implemen-
tation, so can not support feature-driven program customization and composition. 



 Feature Implementation Modeling Based Product Derivation in SPL 153 

7   Conclusion and Discussion 

In this paper, we propose a product derivation method in which feature-driven pro-
gram-level customization and composition are supported by feature implementation 
modeling, instantiation and aspect weaving in AOP. The main contribution of this 
paper is enabling feature-driven program-level customization and composition for 
product derivation by introducing an intermediate feature implementation model be-
tween feature model and program implementation along with corresponding customi-
zation and instantiation. However, our method doses not cover the issue of feature-
driven DSSA (Domain Specific Software Architecture) design. In fact, domain-level 
design and implementation are assumed to have been done. Our method provides a 
mechanism of feature implementation design and instantiation to map feature-level 
customization to program-level configuration and composition. It is an implementa-
tion technology for product derivation in SPL. In the future research, we will focus on 
more systematic and comprehensive support for feature-driven implementation design 
and SPL evolution management. 

Acknowledgments. This work is supported by National Natural Science Foundation 
of China under Grant No. 60703092, and National High Technology Development 
863 Program of China under Grant No. 2006AA01Z189 and 2007AA01Z125. 

References 

1. Deelstra, S., Sinnema, M., Bosch, J.: Experiences in Software Product Families: Problems 
and Issues During Product Derivation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154. 
Springer, Heidelberg (2004) 

2. Zhang, W., Mei, H., Zhao, H.: Feature-driven requirement dependency analysis and high-
level software design. Requirements Eng. 11, 205–220 (2006) 

3. Peng, X., Zhao, W., Xue, Y., Wu, Y.: Ontology-Based Feature Modeling and Application-
Oriented Tailoring. In: Morisio, M. (ed.) ICSR 2006. LNCS, vol. 4039. Springer, Heidel-
berg (2006) 

4. Jansen, A.G.J., Smedinga, R., van Gurp, J., Bosch, J.: First class feature abstractions for 
product derivation. IEE Proc.-Softw. 151(4) (2004) 

5. van Deursen, A., de Jonge, M., Kuipers, T.: Feature-Based Product Line Instantiation Using 
Source-Level Packages. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379. Springer, 
Heidelberg (2002) 

6. Anastasopoulos, M., Muthig, D.: An Evaluation of Aspect-Oriented Programming as a 
Product Line Implementation Technology. In: Bosch, J., Krueger, C. (eds.) ICOIN 2004 
and ICSR 2004. LNCS, vol. 3107. Springer, Heidelberg (2004) 

7. Lee, K., Kang, K.C., Kim, M., Park, S.: Combining Feature-Oriented Analysis and Aspect-
Oriented Programming for Product Line Asset Development. In: SPLC 2006. IEEE Com-
puter Society, Los Alamitos (2006) 

8. AspectJ Team. AspectJ Project, http://www.eclipse.org/aspectj/ 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 154–165, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Feature-Oriented Analysis and Specification of  
Dynamic Product Reconfiguration  

Jaejoon Lee1,* and Dirk Muthig2 

1 Computing Department, Lancaster University,  
InfoLab21, Lancaster, LA14WA, United Kingdom 

j.lee@comp.lancs.ac.uk 
2 Fraunhofer Institute for Experimental Software Engineering (IESE),  

Fraunhofer Platz 1, 67663 Kaiserslautern, Germany  
dirk.muthig@iese.fraunhofer.de 

Abstract. In many application domains, scenarios have been developed that 
benefit from the idea of ambience; Systems will not necessarily be activated by 
people anymore, but will react on their own to situations they recognize. It, 
thereby, must dynamically adapt itself to changes in the technical environment 
or user context. In addition, such dynamically reconfigurable products must be 
customized to the individual needs of particular users. Product line engineering 
can be applied to create these variants efficiently; however, means for handling 
adaptation capabilities at a generic level are required. This paper introduces the 
front-end of such a means by describing an approach for analysis and specifica-
tion of features that vary as a part of reconfigurations at runtime. 

1   Introduction 

In the near future, systems will not necessarily be activated by people anymore, but 
will react on their own to situations they recognize. “Ambient Applications” is the 
name for such applications, which are characterized by situation-caused, proactive 
reactions and dynamic system configuration.  

During the past few years, scenarios were developed in many application domains 
that benefit from the idea of “ambience.” For example, diverse pieces of end user 
equipments interact on their own in a “virtual office” domain - either because certain 
persons are identified, messages are received from other equipments, or based on status 
of higher-level business workflows. Additionally, office equipment will provide ser-
vices to its potentially mobile users that are useful in their current context (i.e., their role 
and responsibilities, the active workflows, and the available technical infrastructure).  

Hence systems must change at all levels: business logic, user interface, and system 
services. This implies that dynamically reconfigurable products are required, which 
are able to continuously:   

- monitor their current situation (i.e., their operational context),  
- validate and execute reconfiguration requests with consideration of change impacts 

and available resources,  and 
- maintain system integrity and running services even during reconfigurations. 
                                                           
* This work is done while Jaejoon Lee was with Fraunhofer IESE. 



 Feature-Oriented Analysis and Specification of Dynamic Product Reconfiguration 155 

In addition, products must be individually customized to their particular users, that is, 
different users in a virtual office organization use different variants of office equipment.  

We apply product line engineering to efficiently construct these variants. Thereby, 
product line engineering is an approach that systematically exploits common charac-
teristics and predicted variations of product families [1][2]. It constructs, on the one 
hand, a generic reuse infrastructure, which is, on the other hand, systematically in-
stantiated and reused while developing particular products. Clearly, variants of dy-
namically reconfigurable products also differ in aspects relevant to the adaptation and 
thus to reconfiguration capabilities of these products. Hence, approaches for engineer-
ing families of dynamically reconfigurable products must provide means for handling 
generic adaptation capabilities. 

In this paper, we address the front-end part of this problem: the proposed approach 
focuses on the analysis and specification of features that vary as a part of reconfigura-
tions at runtime.   

1.1   Related Work   

The approach is related to two areas of work: dynamic product reconfiguration and prod-
uct line engineering. Dynamic product reconfiguration, on the one hand, has been studied 
in various research areas such as self-healing systems [3][4][5], context-aware computing 
[6][7], software component deployment [8][9][10], and ubiquitous computing [11][12]. 
Dynamic addition, deletion, or modification of product features, or dynamic changes of 
architectural structures [13][14] are some examples of dynamic reconfiguration. When a 
change in the operational context is detected, it may trigger product reconfiguration to 
provide context-relevant services or to meet quality requirements (e.g., performance).  

Dynamic reconfiguration approaches in the literature, however, have focused on 
reconfiguration of single products, not on families of products. That is, accommoda-
tion of product-specific dynamic reconfiguration needs that may differ from one prod-
uct to another has not been considered in engineering software assets. On the other 
hand, most efforts in product line engineering have focused on the development of 
reusable assets with variation points for static configuration of products: identifica-
tion and specification of variation points, consistency management among them, and 
techniques for product code generation [1][2][15].  

Recently, Reconfigurable Product Line UML Based SE Environment (RPLUSEE) 
[13] is proposed and its specialty is the provision of software dynamic reconfiguration 
patterns. Depending on the location of dynamic reconfiguration information, these 
patterns are classified into master-slave, centralized, client-server, and decentralized. 
This method also provides Statecharts and transaction models for specifying the dy-
namic reconfigurations. This approach focuses on high-level specifications of dy-
namic reconfigurable units; however, it does not describe techniques and guidelines 
for identifying reconfigurable units and specifying reconfiguration strategies in detail. 
In this paper, we focus on providing a formal base that can be used as a basis for add-
ing other new definitions and consistency rules easily.  

1.2   Approach 

To develop dynamically reconfigurable and reusable core assets, we should be able to 
answer the following questions: 



156 J. Lee and D. Muthig 

– What are the units for dynamic changes in a product and how are they related to 
variations of a product line? 

– What is a common operational context and what is a product specific one?  
– How can we support various reconfiguration strategies such as continuous provi-

sion or suspension of a service during reconfiguration, etc. that may vary among 
products?  

– How can we identify change impacts of dynamic reconfiguration in a current prod-
uct configuration?  

The feature-oriented approach to analyzing and specifying dynamic product recon-
figuration proposed in this paper first analyzes a product line in terms of features. 
Then, it specifies dynamic product reconfiguration by using the analysis results as a 
key driver. The specification is developed with consideration of three concerns: re-
configuration situations (when to reconfigure), reconfiguration strategies (how to 
reconfigure), and consistency rules between specifications.   

As a case study, a virtual office of the future (VOF) product line, which controls 
and manages a collection of devices to provide a any-time any-where office environ-
ment, is used [16]. The rest of this paper is organized as follows. Section 2 describes 
feature analysis activities and Section 3 explains how the feature analysis results are 
used to specify dynamic product reconfiguration. Section 4 discusses the proposed 
approach and concludes this paper with some future work.  

2   Feature Analysis 

Feature modeling is the activity of identifying externally visible characteristics of prod-
ucts in a product line and organizing them into a model called feature model [2]. Fig. 1 
shows, for instance, a part of the feature model for the VOF product line. The primary 
goal of feature modeling is to identify commonalities and differences of products in a 
product line and represent them in an exploitable form, i.e., a feature model.  

Common features among different products in a product line are modeled as manda-
tory features (e.g., Resource Manager and Smart Fax), while different features among 
them may be optional (e.g., Follow Me and Auto Log-on) or alternative (e.g., User Posi-
tioning Method). Optional features represent selectable features for products of a given 
product line, and alternative features indicate that no more than one feature can be se-
lected for a product. Details of feature analysis and guidelines can be found in [17].  

Once we have a feature model, it is further analyzed through feature binding analy-
sis [18]. Feature binding analysis consists of two activities: feature binding unit (FBU 
in short) identification and feature binding time determination. FBU identification 
starts with identification of service features. A service feature represents a major func-
tionality of a system and may be added or removed as a service unit. In VOF, FM, 
RM, and SF features are examples of service features.   

A set of features that should be included in an FBU are identified by traversing the 
feature model along feature relationships. For example, Follow Me, User Authentifica-
tion, Manual Log-on, Auto Log-on, User Positioning Method, Access Point based 
Method, and RFID based Method belong to the FOLLOW ME (FM) FBU. Note that the 
optional AUTO LOG-ON FBU and the alternative USER POSITIONING METHOD 



 Feature-Oriented Analysis and Specification of Dynamic Product Reconfiguration 157 

FBU are identified as separate FBUs, because they may have different binding time 
from their parent FBUs. For an alternative FBU, its alternative variants are listed in 
parenthesis (e.g., AP or RFID for USER POSITIONING METHOD in Fig. 1.  

F o l lo w - M e

U s e r
A u th e n t i f i c a t io n

D e v i c e
A l lo c a t io n

S t ra te g y

M a n u a l
L o g -o nA u to

L o g - o n

D is ta n c e -
b a s e d

D e v i c e  
A t t r ib u te -

b a s e d

S m a r t
F a x

V ir tu a l
P r in te r

O n - l in e
F a x  S e n d

R e c ip ie n t  
R e c o g n i t io n

R e c ip i e n t  
N o t i f i c a t io n

E m a i l

S M S

V ir tu a l  O f f ic e  o f  th e  F u t u re  (V O F )

…

U s e r
P o s i t io n in g  

M e th o d

R e s o u rc e
M a n a g e r

R F ID -b a s e d
M e th o d

A c c e s s  P o in t
b a s e d M e th o d

R e q u ir e

V I R T U A L
P R I N T E R

A U T O  
L O G -O N

U S E R
P O S IT I O N I N G

M E T H O D

( A P  ∨ R F ID )

R E S O U R C E
M A N A G E R

A T T R I B U T E -B A S E D
A L L O C A T I O N

S M S

F A X
N O T I F I C A T IO N

S M A R T  F A X

R e c ip ie n t  N o ti f ic a t io n  r e q u i r e s
R e c ip ie n t  R e c o g n i t io n .

O p t io n a l A l t e r n a t iv e

C o m p o s e d -o f  r e l a t io n s h ip
G e n e r a li z a t io n  r e l a t io n s h ip
I m p le m e n te d -b y  r e l a t io n s h ip

L e g e n d

C o m p o s i t io n  R u le s

……

B in d in g  u n it

F e a tu r e  B id in g  
U n it  N a m e

N A M E

F O L L O W  M E

…

 

Fig. 1. A Feature Model and Binding Units of VOF (Adapted from [19]) 

Next, we need to identify and specify explicitly what feature should be bound into 
a product at runtime1. For that purpose, we adopted the graph theory [20] by taking 
binding units as vertexes and binding relations as edges. In the following, we intro-
duce some definitions for the specification. First, we define features, FBUs, and a 
feature binding graph.  

Definition 1 (feature) 
A feature is defined as a 2-tuple <FName, C>, where 

– FName: the name of a feature.  
– C: the commonality of a feature, which is one of mandatory, optional, or alternative.  

Definition 2 (feature binding unit) 
An FBU is defined as a 3-tuple <FBUName, C, CF>, where 

– FBUName: the name of a feature binding unit.  
– C: the commonality of a feature binding unit, which is one of mandatory, optional, 

or alternative.  
– CF: a set of features that constitute a feature binding unit.  

                                                           
1 The feature binding at earlier phase of lifecycle (e.g., product development time, installation 

time) is discussed in [18]. In this paper, we focus on feature binding at runtime.  



158 J. Lee and D. Muthig 

Definition 3 (feature binding graph) 
A feature binding graph G is defined as a labeled digraph without cycles, where: 

– Each vertex is a feature binding unit and V(G) is the vertex set.  
– G has a unique root vertex r, which represents a system.  
– The vertex types m, o, and a represent mandatory, optional, and alternative feature 

binding units, respectively.  
– Each label of a vertex is the name of a feature binding unit.  
– Each edge indicates a binding relation of two feature binding units and the binding 

relation is either static or dynamic binding. E(G) is the edge set.  
– Two vertices cannot have multiple relations.  

r V O F

o o

m

m

o
o

o

V IR T U A L
P R IN T E R

R E S O U R C E
M A N A G E R

A U T O
L O G - O N

D E V IC E
A T T R I B U T E

B A S E D  R E S O U R C E
A L L O C A T IO N

S M A R T
F A X

R E C IP IE N T
N O T IF IC A T IO N

F O L L O W
M E

F e a tu r e  b in d i n g  u n i t

L e g e n d

S ta t ic  b in d i n g  r e l a t io n D y n a m i c  b in d in g  r e l a t io n

o

E N V IR O N M E N T
V IS U A L IZ A T IO N

a

U S E R
P O S IT IO N I N G

M E T H O D
( A P  ∨ R F ID )

o

S M S

…

 

Fig. 2. A Feature Binding Graph of VOF 

Fig. 2 shows a feature binding graph of VOF based on the definitions. The root 
vertex (VOF) represents a VOF system and its descendent vertices are binding units 
that constitute the VOF system. The binding graph in Fig. 2 has five dynamic binding 
relations (e.g., the binding relation between VOF and VIRTUAL PRINTER (VP)) and 
those binding will be made at runtime. Decision on the binding relation type (i.e., 
static or dynamic) is made with considerations of operational context. For example, 
the binding of USER POSITIONING METHOD (i.e., AP based or RFID based) can be 
only made at runtime based on available positioning devices nearby a user.  

In this section, ways to analyze and specify FBUs were introduced. In the next sec-
tion, a graph based dynamic reconfiguration specification is introduced. Also, consis-
tency rules to check for the specifications are explained. 

3   Dynamic Reconfiguration Specifications  

In our approach, the dynamic reconfiguration is specified through three sub-activities: 
reconfiguration context analysis and specification, reconfiguration strategy specification, 



 Feature-Oriented Analysis and Specification of Dynamic Product Reconfiguration 159 

and confirmation of consistency rules between specifications. Each of these activities is 
explained with examples in the following. 

3.1   Context Analysis and Specification  

The context analysis starts with identifying contextual parameters of a product line. A 
contextual parameter is defined as an environmental element that has a piece of in-
formation about a system's context (e.g., current location of a user, battery remaining 
time, etc.). Once contextual parameters are identified, we refine them by defining 
attributes of each parameter. The attributes may include data type, sampling rates, and 
validity conditions. (See Table 1 for a part of dynamic parameter definitions for 
VOF.) In the Type column, the types of contextual parameter values are defined. The 
Sampling Rate defines how often the contextual parameters should be checked. A 
contextual parameter may be valid only if its value is within a pre-defined range or a 
set of values: such conditions are defined in the Validity column. The validity condi-
tions of each contextual parameter should be satisfied before a contextual parameter is 
used to detect contextual changes.  

Table 1. Contextual parameter definition 

Optional 
(FM)

Optional 
(FM)

Mandatory   
(−) 

Commonality 
(dependent 

FBU)

UM == True if L ≠L’

UM == False if L = L’

60 
seconds

Boolean
User in 

Move (UM)

30 
seconds

Log-in 
time

Sampling 
Rate

String

String

Type

L = “Entry” ∨ “D-office” ∨
“Meeting Room 1” ∨ “Meeting 

Room 2”

P = “Director” ∨ “D-Head” ∨
“Manager” ∨ “Scientist” ∨

“Visitor” ∨ “Administrator”

Validity 

(a valid range of value or a set of 
valid values)

Locations 
(L)

Privilege 
Level (P)

Attributes

Contextual 
Parameters

Optional 
(FM)

Optional 
(FM)

Mandatory   
(−) 

Commonality 
(dependent 

FBU)

UM == True if L ≠L’

UM == False if L = L’

60 
seconds

Boolean
User in 

Move (UM)

30 
seconds

Log-in 
time

Sampling 
Rate

String

String

Type

L = “Entry” ∨ “D-office” ∨
“Meeting Room 1” ∨ “Meeting 

Room 2”

P = “Director” ∨ “D-Head” ∨
“Manager” ∨ “Scientist” ∨

“Visitor” ∨ “Administrator”

Validity 

(a valid range of value or a set of 
valid values)

Locations 
(L)

Privilege 
Level (P)

Attributes

Contextual 
Parameters

 

Then, reconfiguration situations are specified as a logical expression of dynamic 
parameters. A reconfiguration situation is an event that triggers a dynamic reconfigu-
ration. For instance, a Director in Move situation is true when Privilege Level (P) is 
Director and the User in Move (UM) is true. For this situation, the AUTO LOG-ON 
FBU is bound and activated.  

Note that the commonality and variability of contextual parameters and their at-
tributes’ value should also be considered. For example, Privilege Level is common for 
the VOF product line, while Locations and User in Move are optional and their avail-
abilities depend on the selection of the FM FBU. (See the Commonality column of 
Table 1.) Therefore, when a product does not include FM, these two contextual pa-
rameters are not applicable for the context recognition of the product.  

Next, a reconfiguration strategy specification for each reconfiguration situation is ex-
plained.  

3.2   Specification of Reconfiguration Strategy  

A dynamic reconfiguration strategy is about "how" to perform dynamic reconfigura-
tion and is specified for each reconfiguration situation with considerations of binding 



160 J. Lee and D. Muthig 

dependencies (i.e., require and exclude), change impact to other binding units, and 
required resources (e.g., components). Therefore, the action specification should in-
clude information on: 

– Pre/post-conditions for reconfiguration (e.g., required binding units or hardware 
resources),  

– Identification of FBUs that are involved in reconfiguration (e.g., binding units to be 
added, removed, or substituted), and  

– Ways to handle currently active services (e.g., stop, suspend, or keep providing 
current active services). 

For the specification of first two items, we adopt a graph transformation [20], 
which is explained in the following.  

 
Definition 4 (graph transformation) [20]  
A graph transformation is defined as a production p: L → R, where, 

– Feature binding graphs L and R are called the left- and the right-hand side, respectively.  
– p is a schematic description of direct derivations.  
– A production p defines a partial correspondence between the elements of L and R, 

determining which vertices and edges of L should be preserved, deleted, and created 
at R by an application of p. 

 
In this paper, Lu is a pre-image graph for binding of an FBU u and Ru is a resulting 
graph after the binding of u. The pre-image graph Lu of u is specified with the consid-
eration of "require" and "exclude" dependencies of u. For the formal definition of a 
pre-image graph, the following sets are used.  
 
Definition 5 (dangling vertex)  
The degree d of a vertex v is the number of edges connected to v. If d(v) = 0, the ver-
tex v is called a dangling vertex.  
 
Definition 6 (require set for feature binding of u) 
– Require(u): A set of feature binding units that must be present in a current configu-

ration for the binding of an FBU u.  

Definition 7 (exclude set for feature binding of u) 
– Exclude(u): A set of feature binding units that must not be present in a current con-

figuration for the binding of u. 

Definition 8 (pre-image graph of u) 
A pre-image graph Lu of an FBU u is a feature binding graph, where 

– A root vertex r ∈ Require(u)  
– ∀ bu ∈ Require(u) • there exists a path from the root vertex r to bu  
– ∀ bu ∈ Exclude(u) • d(bu) = 0 
– Require(u) ∩ Exclude(u) = ∅  
– ∀ bu ∈ V(Lu) • bu ∈ Require(u) ∨ bu ∈ Exclude(u)   

 



 Feature-Oriented Analysis and Specification of Dynamic Product Reconfiguration 161 

As the definition 8 shows, Lu has the require vertices of u as a connected graph 
from r and has the exclude vertex of u as a dangling vertex. For example, VOF, FM, 
and USER POSITIONING METHOD (RFID) (UPM(RFID) in short) are the require 
vertices to bind AUTO LON-ON, and the exclude vertex is the dangling vertex 
UMP(AP). This means that AUTO LON-ON requires its parent FBU bound in a cur-
rent configuration and the user position method should be RFID based, not AP based. 
Like this, we can explicitly specify pre-conditions for the binding of FBUs.   

A pre-image graph is specified for each FBU and used to determine whether or not 
a binding request is acceptable under a current configuration of a product. To check 
the acceptability, the following rules are used.  

 
Rule 1 (inclusion of require binding units)  
Let C be a feature binding graph that presents a current configuration of a product at 
runtime. Let Lu be a pre-image graph of an FBU u. For binding of u, C must include 
the binding units in Require (u). This rule is formally defined as 

– ∀ bu ∈ Require(u) • bu ∈ V(C)  

Rule 2 (absence of exclude binding units)  
Let C be a feature binding graph that presents a current configuration of a product at 
runtime. Let Lu be a pre-image graph of a binding unit u. For the binding of u, C must 
not include the binding units in Exclude (u). This rule is formally defined as 

– ∀ bu ∈ Exclude(u) • bu ∉ V(C)  
 

These two rules are checked as a pre-condition for binding of a binding unit. In addi-
tion, the following rule is checked as a post-condition.  

 
Rule 3 (inclusion of a resulting binding graph)  
Let H be a feature binding graph that presents a current configuration after a reconfigu-
ration at runtime. Let Ru be a resulting graph of a binding unit u. After binding of u, H 
must include the binding graph Ru as its sub-graph. This rule is formally defined as 

– ∀ bu ∈ V(Ru) • bu ∈ V(H)  
– ∀ e ∈ E(Ru) • e ∈ E(H)  

Next, six phases of reconfiguration is specified with the consideration of feature bind-
ing units to be reconfigured and impacts to other binding units. (See Fig. 3.) The six 
phases are 1) check pre-condition, 2) suspend active binding units that are involved in 
reconfiguration, 3) remove or parameterize binding units that have to be deleted or 
have to change their behaviors, 4) instantiate and bind binding units that are newly 
added, 5) check post-conditions, and 6) activate new or suspended binding units. By 
“active" we mean that the state of a binding unit is in the normal operational state.  

The first and fifth phases, which check pre/post-conditions of a reconfiguration, are 
performed based on the rules 1), 2), and 3). At the second phase, we determine whether 
an involved FBU should be suspended or should provide services continuously during 
reconfiguration. For example, the FM FBU at Phase 2 in Fig. 3 is suspended for re-
configuration. This means that FM finishes its current service and prepares reconfigu-
ration. However, VOF coordinates other services (e.g., SF, VP) continuously during 



162 J. Lee and D. Muthig 

reconfiguration: VOF is notified that FM is being reconfigured and should not request 
a service to FM during reconfiguration.  

At the third phase, FBUs that are no longer needed in the product configuration are 
removed. If an FBU's behavior can be changed through parameterization instead of 
removing and newly instantiating the FBU, relevant parameters for a new configura-
tion are sent to the FBU. For example, the behavior of FM is changed from the one 
that does not include AUTO LOG-ON to the one with AUTO LOG-ON. At the fourth 
phase, binding units to be newly added to a current configuration are instantiated and 
bound to a product. Finally, FBUs are activated, after checking the post-condition of 
the reconfiguration.  

Phase 1:
Check 

pre-conditions

Phase 2:
Suspend  

active binding 
units

Phase 3:
Remove or 

parameterize 
binding units

Phase 4:
Instantiate 
and bind 

binding units

Phase 5:
Check 

post-conditions

Phase 6:
Restart

Pre-image graph 
for binding of 

AUTO LOG-ON

Resulting graph 
by production 

p AUTO LOG-ON

Parameterize FM
for the binding of 
AUTO LOG-ON

Binding of 
AUTO LOG-ON

Activation of 
AUTO LOG-ON, 
UMP(RFID), and 

FM’

R AUTO LOG-ON

active feature binding unit

Legend
Binding relation

Suspension of 
FM and 

UPM(RFID)

VOF

FM

r

o
a

UPM (AP)

VOF

FM
r

o

VOF

FM’
r

o

VOF

FM’

r

o

o a

AUTO 
LOG-ON

UPM 
(RFID)

VOF

FM’

r

o

o a

AUTO 
LOG-ON

UPM 
(RFID)

L AUTO LOG-ON

VOF

FM’

r

o

o a

AUTO 
LOG-ON

UPM 
(RFID)

suspended feature binding unit

a
UPM (RFID) a

UPM 
(RFID)

a

UPM 
(RFID)

 

Fig. 3. Six Phases for Dynamic Reconfiguration 

In the following section, consistency rules for dynamic reconfiguration specifica-
tion are introduced.  

3.3   Confirmation of Consistency Rules 

In this section, two categories of consistency rules are introduced: consistency be-
tween FBUs and consistency between reconfiguration strategy specification and be-
havior specification of FBUs. When more than two FBUs are reconfigured, we have 
to check the dependency between pre/post-conditions of binding units. They are se-
quential and parallel dependencies, and their definitions are as follows: 

 
Definition 9 (Sequential Dependency)  
– Given two reconfigurations p1 and p2 such that G ⇒ H1 ⇒ H2, p2 is sequentially 

dependent on p1, if and only if at least one of “require” vertices (say vr) of p2 such 
that vr ∉ G is added to the graph G by p1 and H1 satisfies the pre-condition of p2.  

 
This dependency means that the reconfiguration p2 can only be performed after the 
reconfiguration p1. For example, AUTO LOG-ON can be bound only when its parent 
binding unit FM is bound beforehand.  
 

 p1 p2 



 Feature-Oriented Analysis and Specification of Dynamic Product Reconfiguration 163 

Definition 10 (Parallel Dependency)  
– Two alternative reconfigurations p1 and p2 such that H1 ⇐ G ⇒ H2 are parallel 

dependent, if and only if at least one of “exclude” vertices (say ve2) of p2 such that 
ve2 ∉ G is added to the graph G by p1, and at least one of “exclude” vertices (say 
ve1) of p1 such that ve1 ∉ G is added to the graph G by p2.   
 

This dependency means that only one of the reconfigurations p1 and p2 can be per-
formed. Suppose, for example, that AUTO LOG-ON and VP may require two distinct 
variants of the USER MONITORING METHOD FBU (i.e., AP- based or RFID-
based). Then, only one of AUTO LOG-ON and VP can be bound to a product configu-
ration at the same time.  

Next, we should consider the consistency between reconfiguration strategy specifi-
cation and behavior specification of FBUs. During reconfiguration, some events (e.g., 
Suspend, Terminate, or Resume events) are sent to FBUs to control their behavior for 
reconfiguration. To maintain system integrity, we have to be sure that these events are 
processed correctly at each FBU. That is, the behavior specification of each FBU 
should be able to handle the received events and to generate corresponding responses 
(e.g., an acknowledging message for a successful process of the Suspend event) so 
that the phases of reconfiguration strategy can be proceeded. The consistency between 
the two specifications can be checked by tracing events and state transitions.  

In this section, activities to analyze and specify dynamic reconfiguration strategy 
are explained. The next section discusses and evaluates our approach. 

4   Conclusions 

From our experience in applying product line engineering methods for many industry 
collaborations, we know the number of product features increases quickly. Hence, the 
management of features and their variations becomes a big burden to product line 
asset developers in practice.  

While applying these technologies in analyzing and specifying product lines of dy-
namically reconfigurable products in the domain of robots or virtual office applica-
tions, we experienced that these burden gets even bigger. The presented approach 
alleviates this difficulty through the grouping of features into FBUs that have the 
same binding time, as well as by taking feature binding units as a key driver for speci-
fying dynamic product reconfiguration.  

The practical applications of the feature-oriented analysis and specification so far 
have improved manageability of product variations and visibility of change impacts of 
a reconfiguration by:   

– Supporting the identification of units of product configuration at the right level of 
granularity: A binding unit contains a set of features that need to be bound together 
into a product to provide a service correctly and share a same binding time. There-
fore, a product can be considered as a composition of feature binding units. This 
grouping helps engineers to see a product in an abstract way and, thus, increases 
visibility and manageability of product configuration.  

– Enabling an intuitive and visual description of dynamically changing product con-
figuration: One of the challenges for dynamic product reconfiguration is the tracking 

p1 p2 



164 J. Lee and D. Muthig 

of current product configuration and the decision making whether or not to accept a 
reconfiguration request to the current configuration. Our approach alleviates this dif-
ficulty by adopting the graph and graph transformation based specifications. It speci-
fies pre/post-condition and change impacts of a dynamic reconfiguration request in 
an explicit and graphical way.  

– Improving management of variation point dependencies: A feature binding unit 
presents a unit of a variation and, therefore, feature binding unit based mapping to 
variation points of the artifacts could help managing consistency between variation 
points. That is, binding time dependency between variation points can be identified 
and managed efficiently with the mapping to feature binding units, as well as with 
the consistency rules between reconfiguration specifications and binding behavior 
specification of each binding unit.    
 
The presented, feature-oriented approach for analyzing and specifying dynamically 

reconfigurable products has been applied successfully in different projects. It has 
proven to clearly ease the development of product lines of reconfigurable systems. In 
this paper, we focused on providing a formal base that can be used as a basis for add-
ing other new definitions and consistency rules easily. Our approach, however, needs 
to be extended to address other issues for dynamic reconfiguration such as exception 
handling strategies during dynamic reconfiguration, a formal base for analyzing con-
sistency between various specifications (e.g., behavior specifications and various 
reconfiguration strategies), and a support for evolutionary changes. 

References 

[1] Clements, P., Northrop, L.: Software Product Lines: Practices and Pattern. Addison-Wesley, 
Upper Saddle River (2002) 

[2] Kang, K., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering. IEEE Soft-
ware 19(4), 58–65 (2002) 

[3] Garlan, D., Schmerl, B.: Model-based Adaptation for Self-Healing Systems. In: Proceeding 
of the Workshop on Self-Healing Systems (WOSS 2002), November 18-19, 2002, pp. 27–
32 (2002) 

[4] Ganek, A.G., Corbi, T.A.: The drawing of the autonomic computing era. IBM Systems 
Journal 42(1), 5–18 (2003) 

[5] Oreizy, P., et al.: An Architecture-Based Approach to Self-Adaptive Software. IEEE Intelli-
gent Systems, 54–62 (May/June 1999) 

[6] Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable Context-Sensitive 
Middleware for Pervasive Computing. Pervasive Computing, 33–40 (July/September 2002) 

[7] Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In: Proceedings 
of IEEE Workshop Mobile Computing Systems and Applications, pp. 85–90. IEEE CS 
Press, Los Alamitos, Calf. (1994) 

[8] Mikic-Rakic, M., Medvidovic, N.: Architecture-Level Support for Software Component 
Deployment in Resource Constrained Environments. In: Proceedings of First International 
IFIP/ACM Working Conference on Component Deployment, Berlin, Germany, pp. 31–50 
(2002) 

[9] van der Hoek, A., Wolf, A.L.: Software release management for component-based software. 
Software-Practice and Experience 33, 77–98 (2003) 



 Feature-Oriented Analysis and Specification of Dynamic Product Reconfiguration 165 

[10] Hall, R.S., Heimbigner, D.M., Wolf, A.L.: A cooperative approach to support software de-
ployment using the software dock. In: Proceedings of the 1999 International Conference on 
Software Engineering, pp. 174–183. ACM Press, New York (1999) 

[11] Sousa, J.P., Garlan, D.: Aura: An Architectural Framework for User Mobility in Ubiquitous 
Computing Environments. In: Proceeding of the 3rd Working IEEE/IFIP Conference on 
Software Architecture, pp. 294–317. Kluwer Academic Publishers, Dordrecht (2002) 

[12] Banavar, G., Bernstein, A.: Software infrastructure and design challenges for ubiquitous 
computing applications. Communications of ACM 45(12), 92–96 (2002) 

[13] Gomaa, H., Hussein, M.: Dynamic Software Reconfiguration in Software Product Families. 
In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 435–444. Springer, Heidel-
berg (2004) 

[14] Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Management. 
Transaction on Software Engineering 16(11), 1293–1306 (1990) 

[15] Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J.H., Pohl, K.: Variability Issues 
in Software Product Lines. In: van der Linden, F.J. (ed.) PFE 2002. LNCS, vol. 2290, pp. 
13–21. Springer, Heidelberg (2002) 

[16] Competence Center for Virtual Office of the Future, http://www.ricoh.rlp-labs. 
de/index.html 

[17] Lee, K., Kang, K., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line 
Software Engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–77. 
Springer, Heidelberg (2002) 

[18] Lee, J., Kang, K.: Feature Binding Analysis for Product Line Component Development. In: 
van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 266–276. Springer, Heidelberg 
(2004) 

[19] Lee, J., Muthig, D.: Feature-Oriented Variability Management in Product Line Engineering. 
Communications of ACM (December 2006) 

[20] Corradini, A., et al.: Algebraic Approaches to Graph Transformation, Part I: Basic Concepts 
and Double Pushout Approach. Technical Report TR-96-17, Pisa, Italy, Universita Di Pisa 
(March 1996) 

 



Managing Large Scale Reuse Across Multiple

Software Product Lines�

N. Ilker Altintas1 and Semih Cetin1,2

1 Cybersoft Information Technologies,
Ata Plaza 3/3, Kat:3, 34758, Istanbul, Turkey
{ilker.altintas,semih.cetin}@cs.com.tr

2 Department of Computer Engineering
Middle East Technical University, Ankara, Turkey

Abstract. For large scale applications in today’s competitive business
environment, partial reuse at class, library, component or module level
is still inadequate. Software product lines provide systematic reuse only
within a product family. Better gains in productivity and high confiden-
tiality can be achieved by large scale reuse across multiple product lines.
This paper puts a methodical way, articulated as “Software Factory Au-
tomation”, which can manage reusable assets across distinct software
product lines based on “domain specific kits” and “software asset meta
model”. The approach is validated by analyzing the software asset reuse
in two different product lines implemented in banking domain and practi-
cally used in real life. The results show that high level of reuse within and
across multiple product lines can be achieved with the charted roadmap.

1 Introduction

Large scale software systems underlie the core of competitive business environ-
ments today, which requires strict high confidentiality in terms of efficiency,
reliability, security, safety, fault-tolerance, and trustworthiness. The term “large
scale” mainly identifies the following attributes in a software system: dynamic
business requirements, complex business rules and workflows, mission criticality,
distributed architectures, integration with diverse information sources, hundreds
of end users, etc. Hence, achieving high confidentiality in large scale software sys-
tems is not straightforward. It requires new analysis techniques for requirements,
resolution of crosscutting concerns, modeling of mission critical architectures, ef-
fective composition of components, and validation procedures [13].

That is why constructing and maintaining large scale software systems re-
quire extreme levels of time, dedication and budget. Similar to other industries,
systematic reuse is the cure for cost-effective achievement of high confident large
scale software systems. Reuse has always been a major goal in software engi-
neering, since it promises large gains in productivity, quality and time to market
� This research has been partially supported by Technology and Innovation Fund-

ing Programs Directorate (TEYDEB) of The Scientific and Technological Research
Council of Turkey (TUBITAK) (ProjectNo/Date: 3060543 and 01.09.2006).

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 166–177, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Managing Large Scale Reuse Across Multiple Software Product Lines 167

reduction. Practical experience has shown that substantial reuse has only suc-
cessfully happened in two cases: libraries, where many generic and small com-
ponents can be found; and product lines, where domain specific components can
be assembled in different ways to produce variations of a given product [8].

Throughout the years, several proposals have been on the stage for improving
the reuse. Recent approaches like Model Driven Development [9,20], Asset-Based
Development [16], Feature-Based Approaches [11,14], Software Product Lines
(SPL) [7,18], and Software Factories [10,15] are all aiming to improve systematic
reuse with different perspectives.

In a recent analysis of reuse strategies, Rothenberger et al. [19] have inves-
tigated the practical reuse strategy alternatives and their effectiveness for a
successful reuse program. This study concludes that the success of reuse is inde-
pendent from the choice of technology; rather it is mainly dependent on how an
organization is effective in all dimensions to reuse assets across the design and
development of different products. Similarly, Buhne et al. [4] state that the reuse
of requirement artifacts for different products leads to an additional dimension
of product lines, so called multiple product lines.

This paper puts a methodical way, articulated as “Software Factory Automa-
tion”, which can manage reusable assets across distinct software product lines
based on “Domain Specific Kits” and “Software Asset Meta Model”. The paper
validates the approach by analyzing the software asset reuse in two different
product lines, i.e. Investment Banking and Financial Gateways, implemented in
banking domain and practically used in real-life. The reuse results obtained with
the charted roadmap across multiple product lines are also discussed.

2 The Approach: Software Factory Automation

Software Factory Automation (SFA) is inspired by the way other industries have
been realizing factory automation for decades. Industrial Factory Automation
utilizes the concept of “Programmable Logic Controllers (PLCs)” to facilitate
the production of domain specific artifacts in isolated units. PLCs may also take
place in moving assembly lines to unify the production process.

PLCs improve the reusability of domain specific artifacts with a consistent
design in mind: PLC has a Programmable Processor (PP) to be programmed
with a Computer Language (CL) through a Development Environment (DE).

Industrial Factory

Programmable Logic Controller (PLC)

Programmable Processor (PP)

Computer Language (CL)

Development Environment (DE)

Software Factory

Domain Specific Kit (DSK)

Domain Specific Engine (DSE)

Domain Specific Language (DSL)

Domain Specific Toolset (DST)

Industrial Factory

Programmable Logic Controller (PLC)

Programmable Processor (PP)

Computer Language (CL)

Development Environment (DE)

Industrial Factory

Programmable Logic Controller (PLC)

Programmable Processor (PP)

Computer Language (CL)

Development Environment (DE)

Software Factory

Domain Specific Kit (DSK)

Domain Specific Engine (DSE)

Domain Specific Language (DSL)

Domain Specific Toolset (DST)

Software Factory

Domain Specific Kit (DSK)

Domain Specific Engine (DSE)

Domain Specific Language (DSL)

Domain Specific Toolset (DST)

Fig. 1. Software Factory Automation and PLC analogy



168 N. Ilker Altintas and S. Cetin

So does DSK abstraction of SFA model: the DSK has a Domain Specific Engine
corresponding to PP, a Domain Specific Language corresponding to CL, and a
Domain Specific Toolset corresponding to DE of PLC concept (See Figure 1).

As the way PLCs are used for abstracting a wide range of functionalities like
basic relay control or motion control, DSKs in SFA approach can be designed
specifically to abstract certain things such as screen/report rendering or business
rule execution. We proceed with presenting Domain Specific Kits in Section 2.1,
and later discuss the overview of SFA approach in Section 2.2.

2.1 Domain Specific Kits as the Main Building Block

Domain Specific Kits (DSKs) have been devised to isolate diverse concerns in solu-
tion space and specify reusable Domain Specific Artifacts to abstract them. They
let the modeling and development of artifacts in isolation and enable their compo-
sition via a choreography model. The concept of DSK has been shaped with the
following constituents, and Figure 2 depicts the interrelation among them:

– Domain Specific Language (DSL): A language dedicated to a particular do-
main or problem with appropriate built-in abstractions and notations.

– Domain Specific Engine (DSE): An engine particularly designed and tailored
to execute a specific DSL.

– Domain Specific Toolset (DST): An environment to design, develop, and
manage software artifacts of a specific DSL.

– Domain Specific Kit (DSK): A composite of a Domain Specific Language
(DSL), Engine (DSE) and a Toolset (DST).

– Domain Specific Artifact (DSA): An artifact that is expressed, developed,
and executed by a DSL, DST, DSE, respectively.

– Domain Specific Artifact Type (DSAT): An artifact type that a certain DSK
can express, execute and facilitate the development. There might be multiple
types associated with a DSK.

Domain Specific
Language 

(DSL)

Domain Specific
Artifact Type

(DSAT)

Domain Specific
Artifact
(DSA)

Domain Specific
Toolset 
(DST)

Domain Specific
Engine
(DSE)

specifies

is-used-to
-develop

executes

is-of-type

Domain Specific
Language 

(DSL)

Domain Specific
Artifact Type

(DSAT)

Domain Specific
Artifact
(DSA)

Domain Specific
Toolset 
(DST)

Domain Specific
Engine
(DSE)

specifies

is-used-to
-develop

executes

is-of-type

Fig. 2. Conceptual model of DSK

The term “Domain Specific Kits” was first used by Griss and Wentzel within
the context of “flexible software factories” [12]. The DSK concept in SFA model
diverges from the Griss’s definition and attributes a new content to the old
term. DSKs in SFA are lightweight and loosely coupled with each other; so their
artifacts can be designed to be composed with others. The artifacts are defined



Managing Large Scale Reuse Across Multiple Software Product Lines 169

and composed by declarative approaches. DSKs are not particular to a product
family, they can be reused across different product lines.

In order to exemplify the DSK concept, a Business Rules Management System
(BRMS) has been discussed here briefly. A BRMS enables the segregation of
business rules from the application where they crosscut almost every tier from
content to service. RUMBA [6] provides a clear separation of a crosscutting
concern, and enables dynamic integration of business rules with other business
processes or business services. RuleML1 is a domain specific language to define
business rules as independent artifacts. Rule and Composite-rule are the artifact
types. RUMBA has a RuleEditor (a domain specific toolset), and a corresponding
runtime engine for rule execution, which takes part in business choreography.

Domain Specific Kit abstraction plays a key role for the separation of con-
cerns during domain design. Upon selecting DSKs, corresponding domain specific
engines are plugged onto the product line reference architecture. Reference archi-
tecture employs a choreography-based composition model for the composition of
domain specific artifacts. Modeling environment utilizes corresponding domain
specific toolsets and constraints of the architecture in providing an integrated
environment for specifying artifacts and their compositions using DSLs and a
choreography language, respectively.

2.2 Product Line Setup with SFA

By placing DSKs at the center, Software Factory Automation (SFA) proposes a
methodical approach to set up software product lines for development of family
of products [2,1]. The main strategy is to separate family design concerns prop-
erly by isolating them in discrete building blocks, and later to compose them
by means of a choreography model. It prescribes three modeling activities that
constitute the domain engineering in software product line approach: Feature-
Oriented Requirements Engineering, Reference Architecture Modeling [5], and
Software Asset Modeling [2]. An overview of major modeling activities that

Software Assets

Domain Specific
Artifacts

Features

Requirements

Feature-Oriented
Requirements Engineering

Modeling
SPL Reference Architecture &
Mapping Features to Artifacts

Feature-Based
Asset Modeling

PROBLEM DOMAIN

SOLUTION DOMAIN

Features

Software Assets

Domain Specific
Artifacts

Features

Requirements

Feature-Oriented
Requirements Engineering

Modeling
SPL Reference Architecture &
Mapping Features to Artifacts

Feature-Based
Asset Modeling

PROBLEM DOMAIN

SOLUTION DOMAIN

Features

Fig. 3. Overview of Software Factory Automation

1 Rule Markup Initiative. http://www.ruleml.org/



170 N. Ilker Altintas and S. Cetin

Step-2: Model Reference 
Architecture 

(Reference Architecture) 

Step-3: Define Asset 
Modeling Language for SPL 

(AML) 

Step-1: Construct Asset 
Capability Model 

(ACM) 

Step-4: Map ACM to 
DSAs/VPs 

(ACM to DSA/VP Matrix)

Step-5: Define & Publish Assets  
(Asset Model) 

Construct Feature-Oriented Domain Model 
(DFM) 

Fig. 4. Overview of asset modeling approach

paves the way from requirements to reusable assets has been presented in
Figure 3.

Similar to Turner et al. [21], we treat features as life cycle entities to bridge
the problem and solution domains and they are meant to be logically modu-
larizing the requirements. Feature-Oriented Requirements Engineering yields the
feature models and their descriptions which provide the functional and non-
functional features of a product family. The domain requirements are modeled
as Domain Feature Model (DFM) in compliant with the Mei et al.’s terminol-
ogy [17]. The content of DFM is a combination of FORM [14] and FODM [17].
A DFM includes feature diagrams, composition rules, feature dictionary, list of
requirements (functional and non-functional), quality attributes of the domain,
other issues and decisions. DFM is fed into reference architecture modeling and
software asset modeling activities (See Figure 4).

Reference Architecture Modeling correlates the architectural aspects and qual-
ity attributes of the problem domain to actual components and connectors of
the solution domain. This method, known as “Symmetric Alignment” [5], assists
the identification of components and associated connectors in structuring the
SPL Reference Architecture. It has later been extended in [1] to identify DSEs
to be employed in product line reference architecture. The communication and
coordination of DSEs are managed through a choreography engine.

Software Asset Modeling uses a feature-based approach to construct the soft-
ware assets that are coarse-grained collections of domain specific artifacts with
variability points. A five-step feature-based asset modeling roadmap has been
charted as shown in Figure 4. It yields the definition of product line and its
assets in terms of domain specific kits, artifacts, their compositions, their de-
pendencies, and the global contextual information.



Managing Large Scale Reuse Across Multiple Software Product Lines 171

depends 

Asset 
Model 

Domain Specific 
Artifact Type 

DSE 

DST 

Constraint 

Choreography 

connects 

Dependency 

DSL 

Variability 
Point 

Context 

Domain 
Specific Kit 

Variant Realization 

Binding Visibility Constraint Implementer 

Configurator 

Parameter Aspect 

Artifact Substitution 

Fig. 5. Software Asset Meta Model (AMM)

The first step is determining asset capabilities in terms of feature diagrams ex-
posing the structural, functional and behavioral properties, and their constraints.
The reference architecture modeling yields the SPL reference architecture at
Step 2. The reference architecture identifies the set of DSEs and associated
DSLs. At Step 3, a modeling language compliant with reference architecture has
been derived from a common meta model. (See below for the details of meta
model and modeling language). Once the modeling language has been defined at
Step 3, asset features are mapped to artifacts and variability points at Step 4.
Mapping determines how those features will be realized, and it is governed by
asset modeling language. Finally, Step 5 defines and publishes the software as-
sets. A published asset model describes the artifacts, variability points, public
artifacts (accessible from the outer world) and external artifacts.

This approach encapsulates correlated features within more cohesive asset
models and manages them as higher-level abstractions. As these coarse-grained
software assets include a set of variability points which can be managed declar-
atively, they are easily reusable within a product family. Furthermore, they can
also be reused in other product lines even if they are not specifically designed
for that domain.

Software Asset Meta Model (AMM). The structure of Asset Meta Model
(AMM) and its relationship with Asset Modeling Language (AML) is crucial
for the understanding of the model. Asset meta model is used to define a asset
modeling language tailored precisely for a product family. AML determines the
artifacts types, choreography rules, dependencies, context information, variabil-
ity types and their realization mechanisms within a product family. Deriving
asset modeling languages for different domains from the same meta model en-
ables the design and cross-utilization of reusable software assets across multiple
product lines as long as they are using the same DSK set and compliant contex-



172 N. Ilker Altintas and S. Cetin

tual information. Figure 5 depicts an overview of asset meta model and a brief
explanation follows.

Domain SpecificArtifact Type (DSAT) identifies the type of artifacts that can be
built by using a DSK. A specific asset may contain artifacts of these types. Domain
Specific Kit defines the domain specific language, engine and the toolset associ-
ated with a DSAT. Dependency indicates the dependency relationbetween artifact
types, which elucidates the usage rules of artifact types and their interrelation.

Choreography defines the terms and conditions for interactions of artifacts. A
choreography definition indicates that two artifacts may communicate subject
to the property definitions such as link type, communication model, etc. Context
includes all variables to be shared by DSEs through a global namespace, which is
the outcome of reference architecture and asset modeling activities. Constraint
defines the product family level constraint type definitions that will be applicable
to all assets.

Variability Point definition plays a key role for the assembly of products by
reusing predefined and adjustable artifacts. The built-in support to define vari-
ability in SFA approach has been adapted from the Orthogonal Variability Model
[18]. A variability point definition identifies its name, associated artifact type (or
artifact), variants, constraints, binding time, visibility and type of realization.
Supported realization mechanisms are Artifact substitution, Implementers (Plug-
ins), Parameters, Configurators, and Aspects. An asset has to be equipped with
implementations of variability points with suitable mechanisms to support its
optional and alternative features.

3 Case Study

In order to present the reuse achievements, we introduce two product families:
Investment Banking (INV) and Financial Gateways (FGW). Then we present a
consolidated table of assets for two product families and analyze the reuse ratio
and scope as the outcome of this case study.

The Scopes of Product Lines. The scopes of INV and FGW product lines
have been defined by enumerating the members of the families and determining
the common and variable features of the products. The scope definition here has
been kept concise just to provide an overview to the reader.

Investment Banking (INV) product family has six products: Fixed Income Se-
curities (FIS), Mutual Funds (FND), Equities (EQT) and Derivatives Exchange
(DEX) products support all order management, buy/sell, clearing, custody, stock
management, transfer operations of financial instruments such as fixed income
securities, mutual funds, equities, and derivatives, respectively. Fund Manage-
ment (FDM) supports the life cycle of mutual funds from the viewpoint of fund
managers. Portfolio Management (PRT) is similar to the FDM; but operations
are executed on behalf of the investor as a private banking service.

Financial Gateways (FGW) product family has three products: EFT Gateway
(EFT) is a gateway to Central Bank of Turkey for electronic fund transfer.



Managing Large Scale Reuse Across Multiple Software Product Lines 173

CRA Gateway (CRA) is a gateway to Central Registry Agency of Turkey for
electronic registration of securities. Credit Bureau Gateway (CRB) is a gateway
to Credit Bureau of Turkey for accessing the credit history of consumers for credit
application processing. Integration with value-added services such as blacklists
and scoring, effective logging and alerting are crucial for all products.

The Domain Specific Kits Employed in Reference Architectures. Prod-
uct line reference architectures of INV and FGW product families have been
constructed with the roadmap presented in [5]. Domain Specific Kits that are
used in this case study have been presented in Table 1.

The Asset Models. Following the roadmap given in Section 2.2, Table 2 pres-
ents a consolidated list of modeled assets, which is structured as follows: the first
column is the name of the asset, the second column shows the scope of asset uti-
lization, the next group of columns indicate whether an asset has been used in
that product. The columns under these groups are marked with the product
codes given in previous section. The cell is marked with (

√
) if the asset is being

used by that product.
The asset utilization column in Table 2 indicates the reuse scope of assets with

the following symbols: “�” indicates that an asset is being used in two product
families, “•” indicates that an asset is being used in at least two products of a
family, whereas “◦” indicates that an asset is being used only in a single product.

Table 1. Domain Specific Kits used in case study

Name of the Kit: Description/Purpose (Artifact types)

RIA Presentation Kit: Business domain independent XML-based technology used
for power screen design in Internet applications [3]. (Page, Region, and Popup)

Reporting Kit: Business domain independent XML-based technology used for re-
port content generation, rendering and presentation in Internet applications (based
on JasperReportsa). (Report)

Business Services Kit: A lightweight kit for development, publishing, administra-
tion of business services with a registry, repository, meta-model and policy manage-
ment services [3]. (Service)

RUMBA Business Rules Kit: Business domain independent kit for business rules
segregation where all aspects, facts, rules and rule-sets can be defined and managed
dynamically by means of a GUI console [6]. (Rule and Composite-Rule)

BPM Kit: A jBPMb-based kit for business process management (BPM) providing
design, development and execution of business processes. (Process)

Persistence (POM) Kit: An XML-based Object-to-Relational (O2R) mapping kit
for defining, deploying and executing SQL queries by mapping to Plain Old Java
Objects (POJOs) [3]. (POM (Persistent Object Model))

Batch Processing Kit: A special purpose kit for defining, scheduling and execution
of batch jobs with enterprise-class features (based on Quartzc). (Job)

a JasperReports, http://jasperforge.org/sf/projects/jasperreports
b JBoss jBPM, http://www.jboss.com/products/jbpm,
c Quartz, http://www.opensymphony.com/quartz/



174 N. Ilker Altintas and S. Cetin

Table 2. Asset utilization within and cross product families

INV Products FGW Products
Assets FIS FND EQT DEX FDM PRT EFT CRA CRB
Customer Core �

√ √ √ √ √
Customer Advanced • √ √ √ √
Blacklist Manager �

√ √ √ √
Document Manager �

√ √ √ √ √ √ √
Account Manager �

√ √ √ √ √ √ √ √
Deduction �

√ √ √ √ √ √ √
Accounting Gateway �

√ √ √ √ √
Accounting • √ √
Administration �

√ √ √ √ √ √ √ √ √
Ext. System Data Transfer �

√ √ √ √ √ √
Alert and Notification Man. �

√ √ √ √ √ √ √ √
Repo ◦ √
Fixed Income Common ◦ √
Fixed Income Trade ◦ √
BPP ◦ √
Asset Delivery ◦ √
Auction • √ √
Asset Lending ◦ √
DEX Operations ◦ √
Equity Common Operations ◦ √
Order Management ◦ √
Credit ◦ √
Capital Increase ◦ √
Public Offering ◦ √
Mutual Fund Buy/Sell Ops. ◦ √
Fund Transfer • √ √
Fund Man. Backend ◦ √
Portfolio Man. Backend ◦ √
Asset/Stock Invest Core • √ √ √ √ √ √
Cash Invest Core • √ √ √
Asset Transfer • √ √
FGW Core �

√ √ √ √ √
FGW Communication • √ √
EFT Messaging (HLP) ◦ √
EFT Operations �

√ √ √
KKB KRS ◦ √
KKB LKS ◦ √
CRA Electronic Registry �

√ √ √ √ √
CRA Core Operations ◦ √

4 Results and Discussions

The success of reuse can be measured by primarily two factors [8]: Reuse Scope
for a reusable component indicates how wide a component is reusable, and Reuse
Ratio in the target application indicates the percentage of reusable components
used in the application. Satisfying these two measures at the same time is not
trivial [8]. Large reuse scope is achieved by those reusable components that
provide relatively low level of functionality (e.g. libraries). Improving the level
of functionality decreases the reuse scope, but at the same time increases the
reuse ratio of the final product. The latter case is common for the product line
approaches (with coarse-grained assets) but only in the limited scope of product
family. Therefore, increasing the reuse scope beyond the boundaries of a single
product family while keeping the reuse ratio high is critical.

There are 39 assets used to build INV and FGW product lines. The distri-
bution of assets according to reuse scope is as follows: there are 12 assets used



Managing Large Scale Reuse Across Multiple Software Product Lines 175

in two product families (31%), 8 assets used within at least two products in a
family (20%), and 19 assets used only in a single product of a family (49%).
These results show that half of the assets are reused in at least two products
and large reuse scope beyond the product lines has been achieved.

On the other hand, the reuse ratio for each product can be calculated as
follows (call this Product as P ): Ar/AP where

Ar: the number of assets used in P and in at least one more product, and
AP : the total number of assets used in building the product P .

For example, 19 assets have been used in building the FIS product (AP is 19),
13 of 19 assets that are used in FIS and in at least one more product (Ar is 13),
the reuse ratio for FIS is 13/19 = 68%.

The reuse ratio for all products varies between 68% and 92%. The reuse ratio
for individual products decreases if product families are considered indepen-
dently. For instance, EFT product uses many assets that are also reused in INV
product line, therefore the reuse ratio of EFT is 81% if both product families
are taken into consideration. However, the value is 55% if it is calculated only
in the context of FGW product line. In any case, the ratio is above 50%.

There are several other factors that have to be noted for the right interpreta-
tion of these results: Those products that share a large number of common busi-
ness functionality, such as DEX, FND, FDM, have better reuse ratios since they
only differ in their core business flows and functionality. The domain knowledge
has been collected and modeled by senior business analysts with many years
of experience in banking. Some of the domain assets are the end products of
banking projects, which have been carried out for several years, and they have
been redesigned from scratch within the scope of these product lines.

Software assets contain large number of domain specific artifacts, and not all
of them have been reused in those products that have been built using that asset.
Our analysis here considers software assets as the main reusable unit which is
compliant with general SPL approach. However, specific to our approach, it will
be meaningful to make a further analysis of reuse results considering the number
of artifacts contained in assets and their reusability in different products.

If multiple product lines share many common features and variations, devel-
oping and maintaining the common artifacts become a critical requirement [4].
Since asset modeling languages are derived from the same meta model and they
depend on a common DSK set, the model enables reuse of software assets across
multiple product lines. Furthermore, keeping a single copy of capability features
and maintaining the variations within these assets eliminate the redundancies
and possibility of inconsistencies when assets are used in multiple product lines
independently.

5 Conclusions and Future Work

Implementing high confidence large scale software systems is still a challenge
and systematic reuse is a cure for the cost effective achievement of such sys-
tems. This paper explains a methodical way, i.e. Software Factory Automation,



176 N. Ilker Altintas and S. Cetin

for managing large scale reuse across multiple software product lines based on
“Domain Specific Kit” abstraction and “Software Asset Meta Model” concor-
dance. Having coherent abstractions in DSKs and loosely coupled integrations
through a choreography model improved the reuse of software assets not only
within a single product family but also across different software product lines.
The achievements in high level of reuse with the charted roadmap have been
given from real life cases and discussed in the paper.

As an extension to this study, we have been defining a “software process
automation” model based on a Software Processes Hyperframe, which will help
automating the development and integration processes of reusable software assets
and, hence, bridge the domain engineering and application engineering activities.
Another future work might be researching the improvement in software reuse by
developing business related Domain Specific Kits and incorporating them to the
production environment.

References

1. Altintas, N.I.: Feature-Based Software Asset Modeling with Domain Specific Kits.
PhD thesis, Middle East Technical University, Department of Computer Engineer-
ing (2007)

2. Altintas, N.I., Cetin, S., Dogru, A.H.: Industrializing software development: The
“Factory Automation” way. In: Draheim, D., Weber, G. (eds.) TEAA 2006. LNCS,
vol. 4473, pp. 54–68. Springer, Heidelberg (2007)

3. Altintas, N.I., Surav, M., Keskin, O., Cetin, S.: Aurora software product line. In:
Turkish Software Architecture Workshop, Ankara (2005)

4. Bühne, S., Lauenroth, K., Pohl, K.: Why is it not sufficient to model requiements
variability with feature models? In: AURE 2004, Japan, pp. 5–12 (2004)

5. Cetin, S., Altintas, N.I., Sener, C.: An architectural modeling approach with sym-
metric alignment of multiple concern spaces. In: ICSEA 2006. Proceedings of the
International Conference on Software Engineering Advances, p. 48. IEEE Com-
puter Society, Los Alamitos (2006)

6. Cetin, S., Altintas, N.I., Solmaz, R.: Business rules segregation for dynamic process
management with an aspect-oriented framework. In: Eder, J., Dustdar, S. (eds.)
BPM Workshops 2006. LNCS, vol. 4103, pp. 193–204. Springer, Heidelberg (2006)

7. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

8. Estublier, J., Vega, G.: Reuse and variability in large software applications. In:
ESEC/FSE-13: Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 316–325. ACM Press, New York (2005)

9. Gitzel, R., Korthaus, A.: The role of metamodeling in model-driven development.
In: Proceedings of the 8th World Multi-Conference on Systemics, Cybernetics and
Informatics (SCI 2004), Orlando, USA, July 19-21 (2004)

10. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Appli-
cations with Patterns, Models, Frameworks, and Tools. Wiley, Chichester (2004)

11. Griss, M.L., Favaro, J., d’ Alessandro, M.: Integrating feature modeling with the
RSEB. In: ICSR 1998. Proceedings of the 5th International Conference on Software
Reuse, p. 76. IEEE Computer Society, Los Alamitos (1998)



Managing Large Scale Reuse Across Multiple Software Product Lines 177

12. Griss, M.L., Wentzel, K.: Hybrid domain specific kits for a flexible software factory.
In: Proceedings of the Ann. ACM Symp. Applied Computing, pp. 47–52 (1994)

13. High Confidence Software and Systems Coordinating Group. High confidence soft-
ware and systems research needs, White House National Science and Technology
Council (2001)

14. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-
oriented reuse method with domain-specific reference architectures. Ann. Softw.
Eng. 5, 143–168 (1998)

15. Langlois, B., Exertier, D.: MDSoFa: a Model-Driven Software Factory. In: Pro-
ceedings of the International Workshop on MDSD at OOPSLA 2004, October 25
(2004)

16. Larsen, G.: Model-driven development: Assets and reuse. IBM Systems Jour-
nal 45(3), 541–553 (2006)

17. Mei, H., Zhang, W., Gu, F.: A feature oriented approach to modeling and reusing
requirements of software product lines. In: Proceedings of the 27th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC 2003). IEEE
Computer Society, Los Alamitos (2003)

18. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

19. Rothenberger, M.A., Dooley, K.J., Kulkarni, U.R., Nada, N.: Strategies for software
reuse: A principal component analysis of reuse practices. IEEE Transactions on
Software Engineering 29(9), 825–837 (2003)

20. Rothenberger, M.A., Hershauer, J.C.: A software reuse measure: monitoring an
enterprise-level model driven development process. Information and Manage-
ment 35(5), 283–293 (1999)

21. Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L.: A conceptual basis for feature
engineering. J. Syst. Softw. 49(1), 3–15 (1999)



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 178–181, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Quality Assessment in Software Product Lines* 

Leire Etxeberria and Goiuria Sagardui 

Computer Science Department, University of Mondragon,  
Loramendi 4, 20500, Mondragon, Spain 

letxeberria@eps.mondragon.edu, gsagardui@eps.mondragon.edu 

Abstract. In a software product line, quality assessment is especially important 
because an error or an inadequate design decision can be spread into a lot of 
products. Moreover, in a product line, different members of the line may require 
different quality attributes. In this paper, a method for quality aware software 
product line engineering that takes into account the variability of quality aspects 
and facilitates quality assessment is presented. 

1   Introduction 

Quality assessment in a reuse context (software product line…) becomes essential 
because an error or mismatch in a reusable asset can be propagated to a lot of prod-
ucts. It also posses some challenges that are not present in single-systems evaluation 
due to the inherent variability of a software product line. In a software product line, 
traditionally the focus has been on functional variability and the evaluation of prod-
uct-line quality attributes such as extensibility, modifiability, etc.: whether the line 
covers all the functionality of the envisioned products in the scope. However, check-
ing whether all the products meet the required levels of Domain-relevant quality at-
tributes has been neglected, especially when those attributes have variability. In a 
software product line, different members of the line may require different levels of a 
quality attribute. One product may require a very high reliability whereas in another 
reliability is not important. In this context, one of the possible strategies for evaluation 
is to assess all the products. However, this strategy may not be worthwhile due to the 
high cost. The method proposed in this paper deals with capturing and managing 
domain-relevant quality attributes variability to facilitate quality assessment in soft-
ware product lines in a cost-effective way.  

2   Quality Aware Software Product Line Engineering 

An extended feature model is proposed to gather the variability at different abstrac-
tion levels (requirements, design and implementation); including functional and qual-
ity attribute variability and the relationship among functional variability and quality 
aspects. The model is completed with a process that facilitates quality aware analysis, 
design and implementation, quality validation and quality aware product derivation. 
                                                           
* This work was partially funded by the Basque Government (a doctoral grant) and the Spanish 

Ministry of Science and Education under grant TIN2007-61779 (OPTIMA). 



 Quality Assessment in Software Product Lines 179 

Domain Analysis Domain Design Domain 
ImplementationDomain 

model
Architect
ure (s)

Domain 
knowledge

Domain Engineering

Requirements 
Analysis

Application Engineering 

Design 
Analysis

Integration 
and Test

features Product 
configuration

Customer 
needs: 
Functional 
and quality 
aspects

Product

Custom 
Design

Custom 
Develop

ment

Extended feature 
model

Feedback

New 
requirements -domain-specific languages

-generators
-components

Quality aware 
requirements  

analysis

Feedback for Quality Improvement

Variability analysis

Quality 
Validation

Support for 
derivation

Augment with Architectural 
and evaluation features and 

impacts

Augment with Implementation 
and evaluation features and 

impacts

Algorithm

Augment with 
derivation features 

and quantify 
impacts

Requirement 
variability 
analysis

Functional and quality 
specification features 

and impacts

Design 
variability 
analysis

Implementation 
variability 
analysis

Create Generic 
evaluation 

model

Select 
products

Evaluate products 
and detect 
interactions

 

Fig. 1. Quality aware Software Product Line development method 

The Fig 1 illustrates the process in a traditional product line lifecycle. The pro-
posed method is performed in concurrence with traditional activities of product line 
development. The phases of the method are the following ones:  

Variability analysis: The FeatuRSEB’s feature model [4] has been extended with an 
extension of the Quality attribute utility tree of ATAM (Architecture Trade-off Analysis 
Method) [2] for characterizing quality attributes and with impacts for specifying indirect 
variation (functional variability that causes variation on quality attributes). Variability 
(functional and quality) and impacts from functional features to quality features are 
modelled at different abstraction levels: requirements, design and implementation. 

Quality validation: This phase tests if the line supports the key quality aspects of the 
products. The evaluation to be cost-effective, a generic evaluation model (with vari-
ability, to evaluate any of the products) is defined or/and representative products are 
selected to be able to extrapolate the evaluation results to all the line. An algorithm 
that helps to select the minimum number of products to quantify impacts taking into 
account possible feature interactions is used. 

Once single products or designs have been selected, it is possible to use validation 
methods for single systems which is a quite a mature field where a lot of techniques 
and methods have been developed. The validation can be performed at different 
stages: at early stages such as design (software architecture evaluation methods) or 
after implementation (quality measurement methods). After validation, the results will 
be analyzed to see if the desired quality requirements are met and whether a redesign 
is necessary. 



180 L. Etxeberria and G. Sagardui 

VARIABILITY ANALYSIS:
• Qualities characterized using 
quality features: quality 
attributes, refinements, 
scenarios…
• Variability: Mandatory (see a: it 
must be fulfilled in all the 
products), alternative, or, 
optional  (see b: applicable when 
the calculator is deployed in a 
mobile with memory limitations)
• Qualitative impacts (see c)

SUPPORT FOR DERIVATION:
• Define levels. Each of the 
levels has a range of values (see 
g,h,i)
• Weights: Contribution of a 
node to achieve its father (see f) 
• Quantify impacts using 
validation results (see d) or 
manual quantification by 
experts: Impacts on accuracy 
and usability has been 
quantified by experts (see e)

i

f

QUALITY AWARE DERIVATION:
• Levels, weights and quantified impacts are used 
during derivation 
• Example: A calculator for a PC with BigDecimal, 
3 languages and Memory will have low file size 
(Minimal + impacts= 46.629), low usability 
(International support: 20 + 40 of 30 =32) and 
high accuracy.

2.   QUALITY VALIDATION:
• Select (using the algorithm) 
and measure products: For 
efficiency and execution time: 44 
products of 2688 (1,6%) are 
selected and evaluated. 

•Detect interactions: 
Device interacts with 
the rest of features (see 
d)

•Check limits
•The product will the 
highest use of memory 
and the one with the 
highest execution time 
has been checked and in 
both cases the scenarios 
(a and b) are fulfilled. 

g

h

Quantitative impacts:
• 3 languages (PC) impacts (+2243) on file size
• 3 languages (Mobile) impacts (+2905) on file size
• Historial (PC) impacts (+7026) on file size
• Memory (PC) impacts (+3943) on file size
• BigDecimal (PC) impacts (+9433) on file size
• ...
• Double impacts (+1) on Accuracy
• BigDecimal impacts (+2) on Accuracy
• 3 languages impacts (+100) on  Several languages ...
• Memory  impacts (+100) on Reuse data

Qualitative impacts:
• 3 languages impacts ++ on Several 
languages are provided
• 3 languages impacts ++ on File Size
• Backspace impacts ++ on Erase last digit
• Memory impacts ++ on Reuse data
• Historial impacts + on Reuse operations
• BigDecimal impacts ++ on Memory Usage
• Double  impacts + on Accuracy
• BigDecimal impacts ++ on Accuracy
• …

Extended feature model

c

Extended feature model  augmented 
with derivation features

a
b

e

d

2

3

1 4

 

Fig. 2. Extended feature model of the example at two different stages and the phases of the 
process 

Support for derivation: In this phase the extended feature model is augmented with 
information for facilitating the derivation. This new information consists on quantita-
tive impacts (derived from the validation results and the previous existing qualitative 
impacts) and groups of quality levels (alternative features associated with a range of 
quality values) to make quality something that can be selected or that it is explicit and 
observable during product derivation.  

Quality improvement: The extended feature model resultant of the previous phase 
can be also very useful as a base for detection and analysis of quality improvement 
opportunities. For instance, design and implementation decisions that affect nega-
tively to quality can be detected and analyzed.  



 Quality Assessment in Software Product Lines 181 

Quality aware derivation (requirement analysis): Product derivation changes be-
cause information is available for selecting the required quality levels or observing 
the quality attribute values when selecting functional features. 

The method has been applied in a calculator software product line (see Fig 2) de-
veloped using AHEAD [1] (products generation is automatic). In this case, quality 
validation has been applied via execution using measurement techniques. The product 
line includes products for different devices (PC and Mobile) and with different func-
tionalities (memory operators, scientific operations, languages, etc.) and quality lev-
els: usability, performance and efficiency attributes. 

3   Conclusions and Future Work 

The method helps to identify and specify the variability that impacts on quality. This 
favors quality aware product line engineering: quality aware design and implementa-
tion, cost effective evaluation of the line and quality aware derivation. It specially 
provides approaches for reducing evaluation cost and effort. 

As future work, we are developing tools to provide support for the process. In the 
example, quality validation has been applied after implementation using measurement 
techniques. However, we have also applied the method at design time using software 
architecture evaluation methods [3]. 

References 

[1] Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE Trans. 
Software Eng. 30(6), 355–371 (2004) 

[2] Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and 
Case Studies. Addison-Wesley Professional, Reading (2002) 

[3] Etxeberria, L., Sagardui, G.: Evaluation of quality attribute variability in software product 
families. In: 15th ECBS (2008) (accepted for publication) 

[4] Griss, M., Favaro, J., d’Alessandro, M.: Integrating feature modeling with the rseb. In: 5th 
International Conference on Software Reuse, ICSR 1998, pp. 76–85 (1998) 

 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 182–185, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Managing Variability in Reusable Requirement Models 
for Software Product Lines 

Hassan Gomaa and Erika Mir Olimpiew 

Department of Computer Science 
George Mason University, Fairfax, VA 
{hgomaa,eolimpie}@gmu.edu 

Abstract. This paper describes a feature-oriented approach for managing 
variability in reusable requirement models for software product lines. The 
functional requirements of a SPL are described with reusable use case mod-
els, reusable activity models and reusable test models. A feature model pro-
vides a central point for analyzing the commonality and variability in these 
functional models, and for managing variability across these models.  

Keywords: Reuse, requirements, software product lines, feature model, use 
case model, activity diagrams, variability mechanism, test specifications. 

1   Introduction 

Managing features is an essential part of software product line (SPL) development. 
Using a feature-oriented approach in a model-based SPL development method can 
facilitate the representation and analysis of variability in the functional requirements 
models of a SPL. This paper describes how a feature-oriented approach is used to 
relate features to variability in reusable functional requirement models of a SPL, and 
to distinguish between coarse-grained and fine-grained functional variability in these 
models. The reusable requirement models described in this paper are reusable feature 
models, reusable use case models, reusable activity models, and reusable test models. 

2   Model-Based Requirements Models for Software Product Lines 

SPL development consists of SPL engineering and application engineering (Figure 1). 
Model-based SPL engineering consists of the development of requirements, analysis 
and design models for a family of systems that comprise the application domain. During 
application engineering, an application configuration is derived from the SPL, which 
includes all the common features and selected optional and alternative features. The 
requirements, analysis, and design models, as well as component implementations, are 
also customized based on the features selected for that application. Any unsatisfied 
requirements, errors and adaptations are addressed iteratively in SPL engineering. 

Product Line UML-Based Software Engineering (PLUS) is a feature-oriented 
UML-based design method. In the Requirements phase, PLUS uses feature modeling 



 Managing Variability in Reusable Requirement Models for Software Product Lines 183 

to model variability and use case modeling to describe the SPL functional require-
ments [2]. The relationship between features and use case is explicitly modeled by 
means of a feature/use case dependency table.  

 

Fig. 1. SPL development process used with PLUS 

3   Reusable Feature Models 

Feature modeling is an important aspect of SPL engineering [4].  Features are ana-
lyzed and categorized as common features (must be supported in all SPL members), 
optional features (only required in some SPL members), alternative features (a choice 
of feature is available) and prerequisite features (dependent upon other features). 
There may also be dependencies among features, such as mutually exclusive features. 
The emphasis in feature modeling is capturing the SPL variability, as given by op-
tional and alternative features, since these features differentiate one member of the 
family from the others. 

With PLUS, features can be incorporated into UML using the meta-class concept, 
in which features are modeled using the UML static modeling notation and given 
stereotypes to differentiate between «common feature», «optional feature» and «alter-
native feature» [2]. Furthermore, feature groups, which place a constraint on how 
certain features can be selected for a SPL member, such as mutually exclusive fea-
tures, are also modeled using meta-classes and given stereotypes, e.g., «zero-or-one-
of feature group» or «exactly-one-of feature group» [2]. 

4   Reusable Use Case Models 

In single applications, use cases describe the functional requirements of a system; they 
can also serve this purpose in SPLs. The goal of the use case analysis is to get a good 
understanding of the functional requirements whereas the goal of feature analysis is to 
enable reuse [5]. Use cases and features complement each other. Thus optional and 
alternative use cases are mapped to optional and alternative features respectively, while 
use cases variation points are also mapped to features [2].      



184 H. Gomaa and E.M. Olimpiew 

In a SPL, kernel use cases are required by all members of the SPL.  Other use cases 
are optional, in that they are required by some but not all members of the SPL.  Some 
use cases may be alternative, that is different versions of the use case are required by 
different members of the SPL.  In addition, variation points specify locations in the 
use case where variability can be introduced [2]. 

5   Reusable Activity Models 

Functional models, such as activity diagrams, can be used to make the sequencing of 
activities in a use case description more precise for analysis and testing. An activity 
diagram is created from each use case description in the use case model, and then 
activities in the activity diagrams are associated with the features in the feature model. 
An engineer uses the feature to use case relationship table of PLUS [2] to analyze the 
impact of common, optional, and alternative features on the activity diagrams. Activ-
ity nodes are categorized as kernel, optional, variant, or adaptable. Feature conditions 
[2] are added to associate the variability in the control flow of an activity diagram 
with a feature in a feature model. The values of a feature condition represent possible 
feature selections. 

6   Reusable Test Models 

Use-case based testing methods for SPLs extend use cases, or functional models de-
veloped from these use cases, to be configurable for an application derived from a  
 

 

Fig. 2. Extending PLUS with CADeT 



 Managing Variability in Reusable Requirement Models for Software Product Lines 185 

SPL [1, 6] while feature-based testing approaches for SPLs use feature models to 
select representative configurations to test. Customizable Activity Diagrams, Decision 
Tables and Test Specifications (CADeT) is a functional testing method that creates 
test specifications from the use case and feature models of a SPL. 

CADeT extends PLUS to create functional models that can be used to generate 
functional system test specifications. Figure 2 shows how CADeT (shaded in gray) 
impacts the PLUS method [2]. A SPL engineer develops the SPL requirement models, 
analysis models, and software architecture using PLUS. Then, a test engineer uses 
CADeT to develop customizable activity diagrams, decision tables, and test specifica-
tions from the feature and use case requirements models. An application engineer 
applies feature-based application derivation to derive one or more applications from 
the SPL, while a test engineer uses CADeT to apply feature-based test derivation to 
select and customize the test specifications for these applications. 

7   Conclusions 

This paper has described a feature-oriented approach for modeling and managing 
variability in reusable functional requirement models of a SPL, in particular reusable 
feature models, reusable use case models, reusable activity models, and reusable test 
models.  It is important to understand how the modeling elements in the different 
models relate to each other; meta-modeling can be used for this purpose [3]. 

References 

1. Bertolino, A., Gnesi, S.: PLUTO: A Test Methodology for Product Families. In: Software 
Product-Family Engineering: 5th Int’l. Workshop, Siena, Italy (2003) 

2. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
based Software Architectures. Addison-Wesley, Reading (2005) 

3. Gomaa, H., Shin, M.E.: A Multiple-View Meta-modeling Approach for Variability Man-
agement in Software Product Lines. In: Bosch, J., Krueger, C. (eds.) Int’l. Conf. on Soft-
ware Reuse, pp. 274–285. Springer, Heidelberg (2004) 

4. Kang, K.: Feature Oriented Domain Analysis. Software Engineering Institute, Pittsburg, PA 
(1990) 

5. Griss, M.L., Favaro, J., Alessandro, M.d.: Integrating Feature Modeling with the RSEB. In: 
International Conference on Software Reuse. IEEE Computer Society, Victoria, Canada 
(1998) 

6. Reuys, A., Kamsties, E., Pohl, K., Reis, S.: Model-based Testing of Software Product Fami-
lies. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 519–534. 
Springer, Heidelberg (2005) 

 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 186–199, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A BDD-Based Approach to Verifying Clone-Enabled 
Feature Models’ Constraints and Customization 

Wei Zhang1,2, Hua Yan1,2, Haiyan Zhao1,2, and Zhi Jin3 

1 Key Laboratory of High Confidence Software Technology, 
Ministry of Education of China 

2 Insititute of Software, School of Electronics Engineering and Computer Science, 
Peking University, Beijing, 100871, China 

3 Chinese Academy of Sciences, Beijing, China 
{zhangw,yanhua07,zhhy}@sei.pku.edu.cn, zhijin@amss.ac.cn 

Abstract. In this paper, we present a kind of semantics for constraints in clone-
enabled feature models, which resolves the problem of what kinds of constraint 
should be added to a feature model after some features are cloned. The semantics 
is composed of two patterns: the generating pattern and the adapting pattern, to 
address the two problems of what kind of constraints should be imposed on a 
clonable feature and its clones, and how an existing constraint should be trans-
formed in the context that features involved in the constraint are cloned, respec-
tively. After that, we propose a BDD-based approach to verifying clone-enabled 
feature models, an approach that makes efficient use of the BDD (binary decision 
diagram) data structures, by considering the specific characteristics of feature 
models’ verification. Experiments show that this BDD-based approach is more ef-
ficient and can verify more complex feature models than our previous method. 

Keywords: Feature models, Clonable features, Constraints, Customization, 
Verification. 

1   Introduction 

Feature models have been recognized as an important technique to capture and organ-
ize the reusable requirements in a specific software domain [7,8,5,2,1,9,13]. One 
important purpose of feature models is to facilitate the reusing of these reusable re-
quirements, and this purpose is usually achieved by using a customizing-based ap-
proach. That is, when developing a new application in a software domain, you do not 
need to elicit and analyze the application’s requirements from scratch, but can just 
customize the domain’s feature model (selecting a subset of features from it), and use 
the customizing result as a starting point for the application’s requirements engineer-
ing activity. 

One problem in a feature model’s customization is the verification problem [9]. This 
problem is caused by the fact that not any subset of features from a feature model is a 
valid customizing result. Usually, there are constraints among features, and a valid cus-
tomizing result must satisfy all these constraints. For this reason, when a customizing 



 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 187 

decision1 is made on a feature model, we need to verify that those constraints among 
features are not violated by the decision (namely, the verification of feature models’ 
customization). Otherwise, the inappropriate decision will be propagated implicitly to 
latter customizing activities, and thus decrease the efficiency of customization. In addi-
tion, before customization, we should first ensure the correctness of constraints among 
features (namely, the verification of feature models’ constraints). 

The difficulty of the verification problem is caused by its NP-hard nature. In es-
sence, the verification of feature models is a constraint satisfaction problem (CSP), 
and researchers have recognized that the CSP is an NP-hard problem in general [11]. 
In our experience, when a feature model contains a large number of features with a 
complex set of constraints among them, the verification using a third-party’s model 
checker usually consumes an intolerable period of time, or even runs into a live-lock 
state. The NP-hard nature makes it difficult to find an efficient way to solve the veri-
fication problem of feature models. 

Another problem relating to the verification of a feature model’s customization is 
caused by the introduction of clonable features into the feature model2. In customization, 
the tree structure containing a clonable feature and all its offspring features can be cloned 
into many copies, and each copy can be customized individually. The problem caused by 
clonable features is that some constraints among features will lose their original semantics 
after a feature is cloned [3]. As a result, we will lose the capability of verifying whether a 
customizing result is a valid one based on the constraints among features. 

requires

(a) Feature model with three features A, B
and C. B is a clonable feature and has a
child feature C. A and C are optional 
features. There is a constraint: A requires C.

(b) If B is cloned into a set of features: B1
B2, …, and Bn, then, what is the semantic 
of the original constraint “A requires C”?  

[1..*]

?
AA CC AA C1C1 C2C2

The clonable tree structure 
containing the clonable 
feature B and all its 
offspring features through 
refinement relations BBB B1B1B1 B2B2B2

CnCn

BnBnBn

 

Fig. 1. The semantic-losing problems caused by clonable features: an example 

An example of the problem is depicted in Fig. 1 (see Table 1 for the exact meaning 
of the symbols). The constraint “A requires C” means that if A is bound (i.e. selected) 
in a customizing result, then C should also be bound in it. In customization, if C is 
cloned into a set of clones: Ci (i = 1, 2, …, n), how should the constraint “A requires 
C” be adapted to these clones? Should the binding of A require or be independent of 
the binding of these clones. 

According to the two problems above, the main contributions of this paper are two-
fold. For the semantic-losing problem, we present a kind of semantics for constraints 
                                                           
1 A customizing decision on a feature model means deciding whether to make a feature remain-

ing in the customizing result (binding a feature) or to remove the feature from the result (re-
moving a feature). 

2 In this paper, a feature model with clonable features is called a clone-enabled feature model. 



188 W. Zhang et al. 

in clone-enabled feature models. For the verification problem, we propose a BDD-
based approach to verifying both feature models’ constraints and customization, an 
approach that makes efficient use of the BDD (binary decision diagram) data struc-
tures based on the specific characteristics of feature models’ verification. 

The rest of this paper is organized as following. Section 2 introduces some pre-
liminary knowledge. Section 3 presents the semantics for constraints in clone-enabled 
feature models. Section 4 proposes the BDD-based approach to verifying feature 
models. Related work is discussed in Section 5. Finally, Section 6 concludes this 
paper with a short summary. 

2   Preliminary 

In this section, we first introduce a notation for clone-enabled feature models, and a 
propositional logic based definitions of constraints among features. After that, we 
clarify a fact about clonable features, that is, there is actually a clonable structure 
related to each clonable feature. 

2.1   A Notation for Feature Models 

Table 1. Symbols in the notation for feature models 

Symbol Name Explanation 

XX  

A mandatory feature 
with the name “X”. 

A mandatory feature must be selected in a customizing 
result, if its parent feature is selected. If its parent is re-
moved, it must also be removed. If it hasn’t a parent feature, 
then it must be selected in any customizing result. 

YY  

An optional feature 
with the name “Y”. 

An optional feature can either be selected in or be removed 
from a customizing result, if its parent feature is selected or 
it hasn’t a parent. If its parent is removed, it must also be 
removed. 

ZZ  

A feature that can be 
either mandatory or 
optional. 

In our presentation, we use this symbol to denote a feature 
that can be replaced by either a mandatory feature or an 
optional feature. 

ZZ  
A feature reference. A reference to a feature that has the name Z. 

[a..b] A symbol for clonable 
features. 

When the symbol is placed at the top of a feature, it means 
that the feature is clonable. In the symbol, a and b are two 
integers satisfying the property: 0 < a ≤ b, and the meanings 
is that the number of the clonable feature’ clones should not 
less than a and not greater than b. 

 

A refinement relation 
between two features. 

A refinement relation connects two features. The feature 
connecting to the non-arrow end is called the parent of the 
feature connecting to the arrow end. A feature can only have 
one parent feature at most. 

 
A refinement path 

In our presentation, we use this symbol to denote a path 
containing one or more refinement relations, and zero or 
more features. Each feature connects to two different re-
finement relations’ arrow and non-arrow ends, respectively. 

   
   



 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 189 

Table 1. (continued) 

 
A requires constraint 
between two features. 

A requires constraint connects two features. The feature 
connecting to the non-arrow end is called the requirer, and the 
other the requiree. This constraint means that if the requirer is 
bound in a customizing result, the requiree also be bound. 

 
An excludes constraint 
between two features. 

An excludes constraint connects two features. This constraint 
means that the two features should not be both bound in a 
same customizing result. 

type

 

A binding predicate 
among a set of features 
and binding predicates 

The left end connects to a composite constraint or to one of 
the right ends of a binding predicate. The right ends connect 
to a set of features and binding predicates, respectively. We 
define three types of binding predicate: and (denoted by ∧); 
or (denoted by∨ ); xor (denoted by 1). See Table 2 for the 
formal definition of binding predicates. 

type
 

A composite constraint 
between two binding 
predicate 

We define two types of composite constraint: requires 
(denoted by ); excludes (denoted by ). See Table 3 
for their formal definition. 

Table 2. The formal definition of binding predicates. In this table, A and B denotes features, 
and p and q denotes binding predicates. For a feature F, bind(F) is a predicate; it is true if F is 
bound, and false if removed. In our notation, we only use binding predicates as constituent parts 
of the composite constraints, but not use them to represent individual constraints. 

or(A, …, B, …, p, …, q) and(A, …, B, …, p, …, q) xor(A, …, B, …, p, …, q) 

Binding 
Predicate 

AA BB
type

p

type

q  
AA BB

type

p

type

q  

AA BB
type

p

type

q  

Formal 
Definition 

bind(A)∨...∨¬bind(B) 
∨...∨p∨...∨¬q 

bind(A)∧... ∧¬bind(B)  
∧...∧p∧...∧¬q 

bind(A)⊗... ⊗¬bind(B) 
⊗...⊗p⊗...⊗¬q 

Table 3. The formal definition of composite constraints. In this table, p and q denotes binding 
predicates. In the situation that p and q only contains one feature, the two types composite 
constraints becomes the requires and the excludes constraints between two features. 

requires(p, q) excludes(p, q) 
Composite 
Constraint typetypetypetypep q

 
typetypetypetypep q

 

Formal 
Definition p → q p → ¬q 

2.2   The Clonable Structure Related to a Clonable Feature 

A clonable feature does not mean that only the feature itself can be cloned into many 
copies. Usually, it means that a structure related to the clonable feature can be cloned 
into many copies. The structure is formed from three kinds of element: the clonable 
feature, all its offspring features, and all the refinement relations between these features.  



190 W. Zhang et al. 

BB

AA

C DCC DD

[1..*]

E F GEE FF GG

B1B1

AA

C1 D1C1C1 D1D1

E1 F1 G1E1E1 F1F1 G1G1

BnBn

Cn DnCnCn DnDn

En Fn GnEnEn FnFn GnGn

The clonable 
structure related 
to the clonable 
feature B

……

(a) Before cloning. (b) After cloning.  

Fig. 2. The clonable structure related to a clonable feature: an example 

Such a structure is exemplified in Fig. 2 (a), in which, feature B is clonable, and the 
dashed shape shows the clonable structure related to B. In customization, the cloning 
of B actually leads to the cloning of the related structure, and after cloning, each clone 
of B becomes a child feature of B’s parent feature A (see Fig. 2 (b)). For any feature in 
a clonable structure, the property whether it is mandatory or optional is not changed 
after cloning. In the rest of this paper, we use the cloning of a clonable feature to 
denote the meaning of the cloning of the clonable structure related to the clonable 
feature. For a clonable feature F, we use cs(F) to denote the set that contains all the 
elements in the clonable structure related to F. 

3   Semantics for Constraints in Clone-Enabled Feature Models 

In this section, we present a kind of semantics for constraints in clone-enabled feature 
models. The semantics is composed of two patterns: the generating pattern, and the 
adapting pattern. The former handles the problem of what kind of constraints should 
be imposed on a clonable feature and its clones. The latter deals with the problem of 
how an existing constraint should be adapted in the context that some features in-
volved in the constraint are cloned. Before giving more details about the semantics, 
we first introduce a description structure for the two patterns’ definitions. 

3.1   A Description Structure for the Generating and the Adapting Patterns 

Table 4 shows the components contained in the description structure and the descrip-
tions of these components. 

3.2   The Generating Pattern 

One question related to a clonable feature is whether we should impose any constraint 
on the feature and its clones. In this paper, we adopt a positive answer to this question. 
We treat the relation between a feature and its clones as the type-instance relation. One 
understanding of a type is that it is a set consisting of all the type’s instances. Based on 
this understanding, we can derive that, if a type is removed, any of its instances should 
also be removed. However, this understanding does not tell us how many instances 
should be bound if the type is bound. 



 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 191 

Table 4. Components in the description structure 

Components Description 

Pattern Name A meaningful name for a pattern. 

Clonable Feature A clonable feature. 

Cloned Features All the clones of the clonable feature. 

C
on

te
xt

 

Source Constraint 
An existing constraint that will be transformed by the 
pattern. 

Trigger Condition 

A condition satisfied by components in the context. If the 
trigger condition is true, the pattern must be applied, 
that is, transforming the source constraint into the target 
constraints. 

Target Constraints Constraints transformed from the source constraint. 

Table 5. Definition of the generating pattern 

Pattern Name Generating 

Clonable Feature F 

Cloned Features Fi, (i = 1, 2, …, n) 

C
on

te
xt

 

Source Constraint <Empty> 

Trigger Condition true 
Case 1: 

single- binding 
Case 2: 

multi-binding 
Case 3: 

all-binding 

Target Constraints 
FF

F1F1

F2F2

FnFn  

FF

F1F1

F2F2

FnFn  

FF

F1F1

F2F2

FnFn
 

Based on the analysis above, we developed the generating pattern (see Table 5), to 
address the problem of what kind of constraints should be imposed on a clonable 
feature and its clones. The name “generating” means that some constraints are gener-
ated after the cloning of a clonable feature. The generating pattern defines three cases 
of generated constraints. For a clonable feature F, if it is bound, the single-binding 
will require that exactly one of its clones should be bound, the multi-binding will 
require that one or more clones should be bound, and the all-binding will require that 
all it clones should be bound. If F is not bound, all the three cases will require that 
none of its clones can be bound. 

Since there are three kinds of target constraints in the pattern, a related question is 
which kind should be selected when applying the pattern. We think that the question 
should be answered according to more specific semantics related to each clonable 
feature. A special situation is that: when a clonable feature is mandatory, only the all-
binding target constraints are suitable. Otherwise, the mandatory feature may need to 
be changed into optional. 



192 W. Zhang et al. 

3.3   The Adapting Pattern 

In a clone-enabled feature models, a problem related to a constraint is that how the 
constraint should be adapted in the context that one or more features involved in the 
constraint belong to a clonable structure and that the structure is cloned. 

Table 6. Definition of the adapting pattern 

Pattern Name Adapting 

Clonable Feature F 

Cloned Features Fi, (i = 1, 2, …, n). 

C
on

te
xt

 

Source Constraint const(A, B, …, C, D, …, E): a constraint among a set of features. 

Trigger Condition {A, B, …, C, D, …, E} ∩ cs(F) = {A, B, …, C} ≠ ∅ 

Target Constraints 
const(A, B, …, C, D, …, E) ∧  

( ),...2,1( ni=∧ (bind(Fi)→ const(Ai, Bi, …, Ci, D, E, …, F))) 

For this problem, we introduce the generating pattern (see Table 6). The name 
“adapting” means that some existing constraints should be adapted after the cloning 
of a clonable feature F. The target constraints defined in the adapting pattern contains 
two parts. The first part contains exactly the source constraint, which means the 
source constraint is still maintained after the cloning of F (this is an important charac-
teristic of the generating pattern). The second part contains a set of constraints for 
each of the clones of F, respectively. For each clone Fi, the constraint requires that if 
Fi is bound, then the original constraint should also be satisfied by replacing each 
feature X in the constraint that belongs to cs(F) with its clone Xi. 

4   BDD-Based Verification of Feature Models 

As we can see in Section 3, after a sequence of clone transformations, even simple bi-
nary constraints (i.e. requires and excludes) could be transformed into complex compos-
ite constraints. This further increases the difficulty of feature models’ verification. 

In this section, we present a BDD-based approach to verifying feature models. 
First, we introduce three verification criteria, which are proposed in our previous 
work [13], and have been proven to be effective in detecting deficiencies in feature 
models [14]. Base on the three criteria, we proposed a BDD-based algorithm that can 
check the three criteria’s satisfiability by only traversing once to the nodes in a BDD 
(binary decision diagram). We also provide two strategies to improve the efficiency 
of creating a feature model’s BDD. Experiments show that this approach is more 
efficient and can verify more complex feature models than our previous method. 

4.1   Three Criteria for Feature Models’ Verification 

From the viewpoint of feature models’ verification, a feature model can be abstracted 
into a set of features and a set of constraints among features [13]. According to a 



 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 193 

feature’s binding state, features in a feature models can be partitioned into three sets. 
The bound set contains exactly all the features having been bound, the removed set 
contains exactly all the features having been removed, and the undecided set contains 
all the other features which will be bound or removed in later customizing activities. 
A customizing decision to an undecided feature either binds the feature or removes it. 

Given a feature model, if any of the following three criteria is not satisfied, there 
must be errors or deficiencies either in the constraints among features or in the cus-
tomizing decisions to features [13]. 

Criterion 1: There exists at least a set of customizing decisions to all features in the 
undecided set that will not violate any constraints among features. 

Criterion 2: Each feature in the undecided set has a chance to be bound, without vio-
lating any constraints among features. 

Criterion 3: Each feature in the undecided set has a chance to be removed, without 
violating any constraints among features. 

Von der Maßen and Lichter [15] have created a deficiency framework for feature 
models. Our previous investigation [14] shows that the three criteria can detect most 
kinds of anomaly and inconsistency among constraints at an early stage (i.e. before 
customization). Further details about the three criteria and the deficiency framework 
can be found in [13,14,15]. 

Although the three criteria are very effective, the checking of them is not easy. Cri-
terion 1 is a binary CSP, and the time complexity of its checking is O(2n), where n is 
the number of features in the undecided set. For each undecided feature, Criterion 2 
and 3 can also be easily transformed into two binary CSPs with the time complexity 
of O(2n), respectively. That is to say, the three criteria’s checking could be trans-
formed into the checking of 2n+1 binary CSPs, and the total time complexity would 
be O(2n+2n⋅2n), which equals to O((2n+1)⋅2n). 

4.2   BDD-Based Checking Algorithm for the Three Criteria 

Although the three criteria’s checking could to be transformed into the checking of 
2n+1 CSPs, there is a shortcoming in such an approach, that is, it treats the 2n+1 
CSPs as independent problems, without considering the connections between these 
problems. In fact, we could find that the 2n+1 CSPs are very similar; the only differ-
ence between them is that a different undecided feature’s binding state is assigned to 
bound or removed. If the similarity could be fully explored, the time complexity 
would be further decreased. 

Based on this observation, we investigate the BDD technique and find an algorithm 
that can check the three criteria’s satifiability by only traversing once to the nodes in a 
BDD. Before giving more details about the algorithm, we first give a short introduc-
tion to BDDs. 

In general, a BDD is a compact data structure for representing a Boolean function 
[6]. Fig. 3 shows an example of BDDs. We can see that a BDD is composed of multi-
ple layers, each layer contains a set of nodes related to a propositional variable, and 
each node connects to right layers’ nodes through a true branch or a false branch, 
which means that the node is assigned the value of true or false, respectively. The 



194 W. Zhang et al. 

rightmost layer contains two nodes of true and false, which denotes the Boolean func-
tion’s two possible value. A path from the leftmost node to the true node means that 
the function’s value is true in the value assignment indicated by the path, and a path 
to the false node means the function’s value is false. 

a

c

b

b
d

d true

false

a b c d f

The true path of a.

The false path of a.  

Fig. 3. The BDD representation of Boolean functions: an example. This show a BDD of the 
Boolean function: f = (a ↔ b) ∧ (c ↔ b), where, a, b, c, and d are four propositional variables. 
The path “a true, b true, c false, d false, true” means that, in the following value assignment: 
a=true, b=true, c=false, and d=false, the function f’s value is true. Similarly, the path “a false, 
b true, false” means that f’s value is false in the value assignment indicated by the path. 

Now, we explain how to check the three criteria’s satisfiability efficiently, in the 
context that the set of constraints among features are transformed into a BDD3. For 
Criterion 1, the checking method is simple; if there is a node whose true path or false 
path connects to the true node, then this criterion is satisfied. For Criterion 2 and 3, 
we use the idea illustrated in Fig. 4 to check their satisfiability. 

A
true

false

X A Y

A

A

B
true

false

X B Y

B

B
 

Fig. 4. The idea to check the satisfiability of Criterion 2 and 3. For a feature A, in order to 
check whether it has a chance to be bound, we only need to examine whether all the true paths 
of A’s nodes connect to the false node (see the left part). The answer yes means that A has no 
chance to be bound, and the answer no means A still has the chance. Following the same idea, 
we can check whether a feature has a chance to be removed. The only difference is to examine 
whether all the false paths of the feature’s nodes connect to the false node (see the right part). 

To realize the idea above into an algorithm, we have to consider the situation that a 
BDD contains crossing paths. A crossing path eliminates some nodes from a BDD in 
order to maintain the BDD’s compactness. We need to recover those eliminated 
nodes, before applying the idea above. Fig. 5 shows an example of this situation. 

Based on the general idea and the special situation, we develop the following algo-
rithm to check the satisfiability of Criterion 2 and 3, an algorithm that take a breadth-
first traversal to a BDD’s nodes. 

                                                           
3 See section 4.3 for how to transform a set of constraints among features into to a BDD. 



 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 195 

A
true

false

X A Y

A
A

A crossing path. A
true

false

X A Y

A
A

A

(a). A BDD contains crossing paths. (b). The redundant representation 
of the BDD in (a). 

The eliminated node.

 

Fig. 5. A BDD containing crossing paths and its redundant representation. In (a), although all 
the true paths of A’s nodes connect to the false node, A still has a chance to be bound. This is 
caused by the crossing path that eliminates a node of A. If recovering the eliminated node, we 
can get a redundant representation of the BDD. In the redundant BDD, there is a node of A, 
whose true path does not connect to the false node, and thus A still could be bound. 

A BDD-based algorithm for Criterion 2 and 3. Where, get_true_branch(Node e) 
returns e’s child node through the true path, get_false_branch(Node e) returns e’s 
child node through the false path, and isNonCrossedLayer(Layer layer) returns 
whether the layer is crossed by any crossing paths. The three functions are created in 
a BDD’s construction. 

Input: The root of BDD 
Output: A set that contains all the features violating Crite-
rion 2 or 3.  

Verify(root){  
   Set violatedFeatures :=  ∅; 
   for (layer = getLayer(root) to getLayer(0)){ 
       If (isNonCrossedLayer(layer)=true){ 
           isCriterion1Violated := true; 
           isCriterion2Violated := true;  
           for each node e of layer{ 
               if (get_true_branch(e)!=false_node) 
                  isCriterion1Violated := false; 
               if (get_false_branch(e)!=false_node) 
                  isCriterion2Violated := false;  
          } 
          if (isCriterion1Violated = true || 
              isCriterion2Violated = true    ){  
               featureName = getFeatureName(layer)  
                 violatedFeatures.add(featureName);  
          } 
       } 
   } 
    return violatedFeatures; 
} 

4.3   Constructing a BDD for a Feature Models 

Constructing a BDD for a feature model is to transform the conjunction of constraints 
in the feature model into a BDD. There are two issues to be considered: 
 



196 W. Zhang et al. 

1. How to get a BDD with a smaller size?  
2. How to ensure that the constructing process consume less memory space?  

We adopt two strategies to deal with the two issues. 

Strategy 1: Use the order of the depth-first traversal to feature trees as the variable 
order of BDD. 

BB YY

(a). Feature Model. (b). Constraint.

AA XX

BB

AA

CC

B requires A
∧

Y requires X

B requires A
∧

C requires A

B
Y

A
X

true

false

B A Y X

(c). The smallest BDD.

B
C

A

true

false

B C A

Case 1:

Case 2:

 

Fig. 6. The smallest BDDs in two basic cases. In case 1 with two feature trees, a smallest BDD 
has a variable order, in that, any child feature precedes its parent or the inverse, and variables 
belonging to different feature trees do not mix. In case 2 with a parent feature and its two chil-
dren, a smallest BDD has a variable order, in that, the parent is the last or the first variable. A 
depth-first order to feature trees (whether in pre-order or post-order) can satisfy both of the two 
cases. The analysis above can also apply to feature models with multiple feature trees, in each 
of which, there may be multi-levels of features, and a feature may have three or more children. 

This strategy is concluded from two basic cases in feature models (see Fig. 6). In 
the two cases, we only consider the feature trees (formed by features and refinement 
relations between them) in feature models. As recognized in our previous research 
[13], for a refinement between two features, there is a constraint: child requires par-
ent. Based on these constraints, we find that it leads to a smallest BDD by using the 
variable order generated from the depth-first traversal to feature trees. 

Strategy 2: Construct BDDs for each of the feature trees and for each of the con-
straints in a feature model, then combine these BDDs into the final BDD. 

The purpose of this strategy is trying to decrease the possibility that the intermedi-
ate results in BDDs’ construction consume huge memory space. The idea behind this 
strategy is to avoid considering too many constraints at one time. For the words limi-
tation, we will not give further details about this strategy. 

4.4   Experiments 

To examine the approach’s efficiency and capability, we apply it to verify two sets of 
designed feature models. One set contains 20 feature models only with binary con-
straints, and the number of features in them varies from 10, 20 to 90, and then from 
100, 200, to 1000. The other set contains 20 feature models with both binary and 
composite constraints, and the number of features also varies from 10 to 1000. We 



 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 197 

also use the same two sets of feature models to examine the effect of our previous 
SMV-based method for feature models’ verification [13], a method which transforms 
feature models’ verification into 2n+1 independent CSPs, and uses the model checker 
SMV [10] to verify these CSPs. The environment for our experiments is a notebook 
with a 2.0G HZ CPU, 512 MB memory, and a Windows XP OS. 

Time
(Second)

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

Number of 
Features

0.3 0.6 0.9
1.5

1.1

7.2
1.8

66.7

4.3 6.4
9.0

11.0

37.2

+∞

SMV-based method for 
complex feature models

SMV-based method for 
simple feature models

BDD-based method for 
complex feature models

BDD-based method for 
simple feature models

10 20 30 40 50 60 70 80 90

+∞

0.04 2.9

53.9

1180

+∞

2906

17.5

4.03.60.20.1

0.05

 

Fig. 7. The result of experiments 

Fig. 7 shows the result of our experiments. We can see that, the SMV-based ap-
proach can not handle feature models with more than 100 features, while for feature 
models with 100 features, the BDD-based approach only needs a time less than one 
second. Furthermore, the BDD-based approach can verify complex feature models with 
500 features using 66.7 seconds, and verify simple feature models with 1000 features 
using 37.2 seconds. The experiments show that the BDD-based approach is more effi-
cient and can verify more complex feature models than the SMV-based approach. 

5   Related Work  

Feature models are first proposed by Kang et al. [7] in the feature-oriented domain 
analysis (FODA) method, and then developed by many researchers in the field of 
software reuse [8,5,2,9]. In these researchers, Czarnecki et al. introduced feature 
models into the generative software reuse [2] and proposed the concepts of clonable 
features [4]. Czarnecki et al. also recognized the semantic-losing problem caused by 
clonable features [3], but they did not give a systematic method to resolve this prob-
lem. As far as our knowledge, we do not find any researchers who have given solu-
tions to this problem. 

Mannion [9] proposed a verifying method of feature models, in which, constraints 
among features are formalized using the propositional logic. Based on his research, 
we classified constraints in feature models into several types. For each of them, we 
gave its formal definition, and a graphic representation of it, which is used for feature 
modelers to create constraints in an easy way. We also proposed the three criteria to 
verify feature models [13], and have examined their effectiveness according to the 
deficiency framework created by Von der Maßen and Lichter [15]. However, for the 
checking problem of the three criteria, we transformed it into 2n+1 independent bi-
nary CSPs, without considering the connections between them. 



198 W. Zhang et al. 

Our research on BDD-based verification is inspired by Czarnecki’s research [3], in 
which, Czarnecki used a commercial BDD package to verifying properties of feature 
models. However, it seems that Czarnecki only considered simple binary constraints 
between features (i.e. requires, and excludes) and those local composite constraints 
between a feature and its children. In addition, Czarnecki did not give details about 
how to decide the BDD’s variable order for a feature model, and how to use a BDD in 
efficient ways. 

Batory [1] proposed a LTMS-based approach to detect deficiencies in constraints 
or customization. As we have pointed out [14], this algorithm can check most of the 
deficiencies that our criteria can check, but in a later stage (i.e. after certain customiz-
ing decisions have been made). In addition, this approach’s time complexity is same 
with our approach, namely, O(2n+1). Where, n is the number of features in a feature 
model. In this approach, the transformation from constraints to a CNF (conjunctive 
normal form) needs a O(2n) time, and the checking of deficiencies also needs a O(2n) 
time, since it have to traverse all the disjunction clauses in the CNF. In our approach, 
a BDD’s construction needs a O(2n) time, and the traversal of a BDD also needs a 
O(2n) time. 

In addition, based on our previous work, we develop a graphical notation for con-
straints in clonable-enabled feature models in this paper. We do not notice that there 
are other researchers who have proposed such kind of graphical notations. 

6   Conclusions 

In this paper, we provided a kind of semantics for constraints in clone-enabled feature 
models. The semantics resolved two problems related to clone-enabled feature mod-
els. One is the problem of what kind of constraints should be imposed on a clonable 
feature and its clones, and the other is the problem of how an existing constraint 
should be transformed after some features in the constraint are cloned. To verify fea-
ture models with complex constraints, we proposed a BDD-based approach, which 
makes efficient use of the BDD data structures by considering the characteristics of 
the three verification criteria for feature models. Experiments showed that the BDD-
based approach proposed in this paper is more efficient and can handle more complex 
feature models than our previous approach. 

Acknowledgments. This work is supported by the National Grand Fundamental Re-
search 973 Program of China under Grant No. 2005CB321805, the Hi-Tech Research 
and Development Program of China under Grant No. 2006AA01Z156 and 
2006AA01Z189, and the Natural Science Foundation of China under Grant No. 
90612011, 60528006 and 60703065. 

References 

1. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl, 
K. (eds.) SPLC 2005. LNCS, vol. 3714. Springer, Heidelberg (2005) 

2. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Reading (2000) 



 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 199 

3. Czarnecki, K., Kim, C.H.P.: Cardinality-Based Feature Modeling and Constraints: A Pro-
gress Report. In: OOPSLA 2005 International Workshop on Software Factories (online 
proceedings) (2005) 

4. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-based Feature Models 
and their Specialization. Software Process Improvement and Practice, special issue of best 
papers from SPLC 2004 10(1), 7–29 (2005) 

5. Griss, M.L., Favaro, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB. 
In: Proceedings of Fifth International Conference on Software Reuse, pp. 76–85. IEEE 
Computer Society, Canada (1998) 

6. Hu, A.J.: Techniques for Efficient Formal Verification using Binary Decision Diagram. 
PhD thesis, Stanford University (1995) 

7. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain 
Analysis Feasibility Study. Technical reports, Software Engineering Institute, Carnegie Mel-
lon University (1990) 

8. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented Reuse 
Method with Domain-Specific Reference Architectures. Annals of Software Engineering 5, 
143–168 (2004) 

9. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In: Chastek, 
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg (2002) 

10. The SMV System. Carnegie Mellon University, 
http://www.cs.cmu.edu/~modelcheck/smv.html 

11. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993) 
12. Yang, B.: Optimizing Model Checking Based on BDD Characterization, PhD thesis, CMU 

(1999) 
13. Zhang, W., Zhao, H., Mei, H.: A Propositional Logic-Based Method for Verification of 

Feature Models. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, 
vol. 3308, pp. 115–130. Springer, Heidelberg (2004) 

14. Zhang, W., Mei, H., Zhao, H.: Feature-Driven Requirements Dependency Analysis and 
High-Level Software Design. Requirements Engineering, vol. 11(3), pp. 205–220. 
Springer, London (2006) 

15. von der Maßen, T., Lichter, H.: Deficiencies in feature models. In: Workshop on Software 
Variability Management for Product Derivation, in Conjunction with the 3rd Software 
Product Line Conference (2004) 

 



Performing Domain Analysis for Model-Driven
Software Reuse

Daniel Lucrédio1, Renata P. de M. Fortes1, Eduardo S. de Almeida2,
and Silvio Lemos Meira2

1 Institute of Mathematical and Computer Science - Universidade de São Paulo
Av. Trab. São-carlense, 400 - Centro - CEP 13560-970 - São Carlos - SP, Brazil

{lucredio,renata}@icmc.usp.br
2 C.E.S.A.R. - Recife Center for Advanced Studies and Systems and RiSE
Rua Bione, 220 - Bairro do Recife - CEP 50030-390 - Recife - PE, Brazil

esa@rise.com.br, silvio@cesar.org.br

Abstract. This paper presents a domain analysis approach for model-
driven domain engineering projects. The objective is to address the prob-
lem of identifying which parts of a domain can be automated using
model-driven development techniques. We argue that this task should
be performed together with domain analysis. In this sense, the paper
presents the main activities, guidelines, inputs and outputs of this task.
It concludes by presenting the iterative life cycle approach for dealing
with complex domains.

Keywords: Software reuse, model-driven development, domain analysis,
domain engineering.

1 Introduction

Domain engineering is the process of building reusable assets in a domain, so that
applications can be more easily built reusing those parts. In this context, domain
analysis involves identifying the main concepts and elements from a domain, and
determining its scope, i.e. what will be included and what will be excluded from
the domain. One approach of doing this is feature-based domain analysis [1,2].

Another way to promote reuse is Model-Driven Development (MDD). MDD
is the combination of generative programming, domain-specific languages and
software transformations, which were already being explored back in 1980 [3,4].
Its goal is to reduce the semantic gap between the problem domain and the im-
plementation/solution domain, by using high-level models that shield software
developers from the complexities of the underlying implementation platform [5].
In MDD, models are used to more effectively express concepts, while transfor-
mations are used to automatically generate implementation assets that reflect
the solution expressed in the models [6].

One of the main challenges in designing/implementing a domain is how to
map the features to the design and code, considering all the relationships and
constraints involving the features. This is where MDD techniques can be used

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 200–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Performing Domain Analysis for Model-Driven Software Reuse 201

to increase software reuse in domain engineering. Instead of leaving this task to
be handcrafted by the product developer, the knowledge of how to implement
these constraints is encapsulated in MDD transformations and domain-specific
modelers [7]. In an ideal scenario, all the product developer needs to do is to
choose which features will be present, specify some product-specific parameters,
and automatically generate the design and code for that product.

Of course, this scenario is still far from reality, since not every piece of code can
be automatically generated. However, there are some parts of the domain where
this is not only possible, but can lead to gains in productivity, by increasing the
reuse level. But how to identify which parts of a domain can be automated?

We argue in that this activity should be part of domain analysis. While ana-
lyzing the features of a domain, there should be means to identify the potential
for automation in some sub-domains, already preparing for the subsequent de-
velopments of transformations and/or domain specific languages. Next section
presents how domain analysis is inserted into the domain engineering approach.

2 Context: Model-Driven Domain Engineering Approach

The domain analysis approach described in this paper is part of a larger ap-
proach, for developing reusable MDD-based domains [8]. Figure 1 summarizes
the approach, which is divided into three cycles:

Fig. 1. Basic cycles for developing model-driven reusable software

The basic cycle is domain engineering, which aims at developing reusable
assets based on information about the domain. The input for this cycle includes
Systems information, i.e. all kinds of informations related to applications from
the domain (existing, future and potential applications), and Stakeholder in-
formation, which includes the knowledge from the domain expert, the project
manager, market experts, software architects, developers, and other stakehold-
ers. The output of this cycle is a set of reusable domain assets, which can be used



202 D. Lucrédio et al.

to develop applications for the domain. This includes domain components, but
also domain-specific modelers, which can be used to create models for that do-
main, and model-to-text transformations(also known as platform-specific model
(PSM) to code transformations [9]), used to generate code for these models.

The development of domain-specific modelers and transformations is a com-
plex task, and therefore there are two auxiliary cycles:

The modeler engineering cycle is responsible for producing domain specific
modelers for the parts of the domain (sub-domains) where automation is possi-
ble. It is also responsible for developing a domain-specific language, if it does not
exist. The input for this cycle comes from the domain engineering cycle: features
information, containing the features of the domain, including the variability and
commonality information, sub-domain information, including the related fea-
tures and variability inside the sub-domain, component specifications, including
their interfaces and other design specifications, and domain architecture, which
represents the design decisions that reflect the variability and commonality in-
side the domain. The output of this cycle is a domain-specific modeler, and in
some cases a newly developed domain-specific language, if necessary.

The second auxiliary cycle is transformation engineering, responsible for
developing model-to-text transformations. Its input includes the component spec-
ifications and domain architecture, and also the domain-specific modelers
developed in the modeler engineering cycle. The output are the model-to-text
transformations, which are created using a design by-example approach [10].

The domain analysis activity, subject of this paper, is part of the domain
engineering cycle, and is responsible for gathering information for subsequent
design and implementation phases. It delivers two necessary inputs for develop-
ing modelers and transformations: the domain features, which represent the
variability and commonality inside the domain, and the sub-domains where
automation is possible. Both are indicated in Figure 1.

3 Activities of the Domain Analysis Approach

The domain analysis approach is based on a previous work [11], which does not
have the focus on Model-Driven Development. This paper focuses on the main
differences, emphasizing the aspects related to model-driven development. The
approach has activities for identifying the features [1,2] of the domain, followed
by activities that determine how these features can be implemented using MDD.

3.1 Domain Planning

The first step of the approach is a preparation phase. It involves gathering all
domain information (preparation) and mapping all applications for the domain
(domain scoping [12,13]). It also involves the determination of whether it makes
sense to invest in building a reuse infrastructure in a given domain or not. This
activity is carried out by the domain analyst, with the help from the domain
experts and market specialists[11].



Performing Domain Analysis for Model-Driven Software Reuse 203

3.2 Domain Modeling

This activity is responsible for creating expressive models describing the features
and their relationships [1], with focus on the variability and commonality within
the domain. While the previous activity was concerned with scoping, here the
concern is on the structure of the domain, and the inclusion of more details of
its elements. A set of guidelines can also be useful in this task, which is carried
out by the domain analyst with the help from domain experts [11,14]. The result
is a set of models describing the features of the domain and their relationships.

3.3 Sub-domains Identification

This activity, which was not present in the original work [11], deals with the
identification of sub-domains that can be automated through MDD techniques,
with focus on increasing the reusability of the domain assets.

There is not much information regarding domain decomposition for Model-
Driven Development available in the literature. Also, we were unable to deter-
mine fixed ways or precise metrics and algorithms that can be used to do this
sub-domain identification. Due to this uncertainty, this activity is dependent
on two principles: successive iterations and guidelines. The rationale behind the
iterative process is presented later, in section 4. The guidelines, which were iden-
tified from similar problems regarding software reuse in the literature, and from
our experience with MDD projects, are presented next:

– Focus on automation: although most authors do not present a clear criteria
when performing domain decomposition, in MDD this is very clear: the iden-
tified sub-domains must be automated using modelers and transformations.

– The domain expert holds the key: several authors agree that the knowledge
from the domain expert is extremely valuable [15,16,17]. In this sense, the
sub-domain identification should always be guided by this professional.

– Atomic domains: the identified sub-domain should be atomic, which means
that it cannot be decomposed without altering its primary property [16].
This is important to keep the sub-domain simple, thus easier to automate.

– Features relationships: Closely related features are normally good candidates
to pertain to a same sub-domain. Looking for features that appear to be
separated from the others are also a good hint for finding sub-domains.

– Repetition: If some piece of design or code repeatedly appears inside a prod-
uct, even if not exactly, it is likely that a machine can do some parameterized
copying and pasting, and it is worthy to try to find a sub-domain here. An-
other technique is to search for implementation or design patterns [18].

With these guidelines in mind, the following steps are carried out:

Candidate Sub-domains Selection. In this first step, the domain analyst
tries to identify possibly automatable sub-domains within the domain. Although
the knowledge from the domain expert is the main source of information, the
features model can be useful. By looking at the features model, starting at the



204 D. Lucrédio et al.

top features and going down, the domain analyst can identify keywords that
may represent a sub-domain. As pointed out by [17], the natural categorization
of the domain is the best indication of whether to find a sub-domain.

For each sub-domain candidate, the corresponding features need to be identi-
fied. This can be performed in a matrix, relating each feature to its correspondent
sub-domain, with an optional graphical representation.

Modeling Languages Identification. Once the sub-domain candidates are
identified, the domain analyst tries to determine if there are modeling languages
for them, consulting the domain expert and existent documentation and source
code. It is important to stress that models are not always a graphical representa-
tion using known languages, such as UML. Other languages, including domain-
specific languages and textual models should be considered.

This is performed by searching inside existent applications and documentation
for files that contain models. The features model can also offer tips of what to
look for. Keywords present in the features model, such as feature names, are likely
to appear inside documents and samples, and could be used by an automated
search mechanism to find these files.

Finally, the domain analyst lists the identified modeling languages, associating
them with their correspondent sub-domains.

Tools Identification. If a sub-domain is well known, there is a chance that
there may already be a tool for creating models for it, or even generating code.
Here, the domain analyst and the domain experts try to identify such tools.

Again, the knowledge from the domain expert is essential, but manuals and
deployment documents should also be consulted, since they may have references
to third-party tools used to create models or to generate parts of the application.
Source code can also be inspected in search for indication that it was generated.

The identified tools are then listed and described, including a description of
their functionalities, generated assets, and references to external sources.

Confidence Level Attribution. Identified sub-domains can not always be
automated using MDD techniques. Even for those that can, the cost of developing
modelers and transformations can be too high. Determining this cost is a complex
task. The development of modelers and transformations may lead to changes
and refinements in the features model, which will have great impact on the
development. Also, depending on which sub-domain is implemented first, other
related or overlapping sub-domains may need to be reconsidered.

We are unaware of a study that investigates a way to determine the cost of the
development of these assets in this scenario. For this reason, the approach takes
a different direction. All identified sub-domains are treated as mere candidates
until they are fully realized. And this is why there must be a certain level of
confidence that some sub-domain will render its expected results when realized
as MDD assets, before actually proceeding to design and implementation.

The level of confidence measurement serves as a risk management tool, helping
to ensure that critical changes in the architecture and the analysis models will
lead to the desired results. Although not as precise as a cost-based technique,



Performing Domain Analysis for Model-Driven Software Reuse 205

we believe this approach serves as a decision-making support mechanism in this
complex scenario, and can be used to coordinate the efforts during the iterative
process of the domain engineering approach.

The determination of a level of confidence in a sub-domain is highly subjective
and dependent on the knowledge of the domain expert. However, the following
aspects have impact on the decision, and should be considered:

– Is there a modeling language for the sub-domain?
– If the answer for the previous question is positive, what is the maturity

of this language: Is it a well-known language, known and used by domain
experts in several organizations? Does it exists only inside the organization?
Was it developed only for this project?

– Was the modeling language validated through case studies for this project?
– Is there a tool available for the sub-domain?
– If the answer for the previous question is positive, what is the maturity of

this tool: Is it a well-known tool, known and used by domain experts in
several organizations? Does it exists only inside the organization? Was it
developed only for this project?

– Has the tool been validated, through case studies, for this project?
– How does the tool fit in the project? Does it generate executable code? If

not, can it be adapted to generate code? How much effort is needed to use
the tool output in the project?

– Has a pilot project been conducted for this sub-domain, using a modeling
language and a tool for generating code?

In order to more systematically determine the confidence level, the domain
analyst can develop a measurement involving these and other questions that may
arise. A simple way to do that is to develop a questionnaire with these questions,
assigning a weighted value for each answer. The sum of all values is the level of
confidence. If this value is greater than a predefined minimum, the sub-domain
should be considered for implementation.

The domain analyst must consult all stakeholders when defining this measure-
ment. There are multiple factors that must be considered, and different situations
may require different values. For example, for safety-critical systems, it is rea-
sonable to use only well-known languages and tools, and therefore higher weight
values are attributed to these questions. In projects with little time-to-market,
this may also be the only option. However, in projects with more time available,
the values can be adjusted to include more potential sub-domains, since there is
more time to develop tools and modeling languages. This is also the case where
the goal is to build larger domains for reuse.

Candidate Sub-domains Documentation. In this step, the domain analyst
creates a document for each identified sub-domain, including all information
gathered in the previous steps: the involved features, modeling languages and
tools, and the level of confidence.

Here the domain analyst also describes the interaction between the sub-
domain candidate and the remainder of the domain. At this point, this de-
scription should focus on high-level cooperation between the features, aiming



206 D. Lucrédio et al.

to help in the decision of whether it is worthy to invest in the automation of
this sub-domain. In later stages, if it is decided that this sub-domain will be
automated, this interaction will be refined, including detailed definition of the
interface between the generated assets for this sub-domain and the other assets.

3.4 Domain Validation and Documentation

Most of the documentation was already produced in the previous activities, such
as domain models, and documents describing the features. However, before the
domain is ready to be used, it is necessary to validate and package all information
in a more organized structure, designed to facilitate reuse.

The validation involves checking for inconsistencies and missing information.
First, the features are documented according to a template [19], including their
semantic description, rationale, exemplar applications, constraints, among other
information [11]. Then, the domain analyst checks for homonyms and synonyms,
in order to reduce the ambiguity in the documentation of the features. Next, the
domain is validated against the stakeholder information and the initial require-
ments. The domain analyst checks the documented features and related doc-
uments, validating the accuracy and completeness of the domain. Finally, the
domain documentation is finalized, including its description, the scoping criteria
used for including/excluding its elements, exemplar systems, domain genealogy,
the features and the documented sub-domains.

3.5 Decision Upon Sub-domain Inclusion/Exclusion

In this activity, which was also not present in the original work [11], the domain
analyst, together with the stakeholders and the domain experts, analyzes the
identified sub-domains, in order to determine if they will be included in the
subsequent design and implementation phases.

According to the level of confidence of the sub-domain candidates, their in-
terrelationship with the remaining domain elements, and other external factors,
including the business goals, market conditions, among others, each sub-domain
will be selected for inclusion or exclusion.

However, the process is iterative, and some sub-domains may be more mature,
while others may need further development. In this sense, instead of merely
including or excluding a sub-domain, there are different levels of decisions (D)
that can be taken:

D1. Immediate exclusion. This means that the sub-domain candidate is not
suitable for automation, and should be discarded immediately. Typically, this
sub-domain candidate has a low level of confidence, and no modeling language
nor tool to create models for it.

D2. Keep for later evaluation. This means that this sub-domain has a chance
of being automated, but there are no concrete evidence that it could be used
someday. Typically, it has a low level of confidence, no modeling language, no
tool, but the domain experts knowledge or the experience in the development



Performing Domain Analysis for Model-Driven Software Reuse 207

indicate that it may become useful after some development. However, there are
no ways of estimating effort for turning it into a concrete sub-domain, i.e. it is
too risky to start any development on it. Therefore no action is taken in this
iteration. However, if the stakeholders decide to take the risk, the same sub-
domain can fall into the next decision level (D3).

D3. Start investigation. If a sub-domain has a chance of being automated, but
the tools for doing it are not available, it can be subject of further investigation,
involving the development of prototypes of modeling languages and/or mod-
eling/transformation tools. Typically, in order to start an investigation, there
should be a way to estimate the effort necessary, in order to reduce the risks.
Also, although this decision involves effort and resources, these may be limited,
since there is no impact on the other domain elements. Therefore, it is always
possible to stop the investigation at any time.

D4. Start the development of production assets. This is the point of no
return for a sub-domain. By making this decision, the organization makes a
commitment that this sub-domain will be included in the development process,
differently from D3, where there is a possibility that the sub-domain is discarded.
A sub-domain in this level should have a high level of confidence, but may not
have the necessary tools for being automated yet. This is a critical decision,
since it means spending more serious efforts and resources in automating the
sub-domain and managing its impacts on the domain.

D5. Start a pilot project. After the sub-domain is implemented, but before it
is included in the actual product development, it may be a good practice to run
a pilot project, in order to reduce the risks of introducing the new technologies
in the development, and reduce the barriers to the technology transfer. It can
also serve as a way to verify the real benefits of the new technology and plan
the best way of applying it to real projects.

D6. Immediate inclusion. This means that the sub-domain is mature enough,
has a tool and one or more modeling languages that are stable and validated.
The level of confidence is high, and the sub-domain may be included in the
subsequent design and implementation, meaning that the development of domain
assets should be driven by the existing languages and tools for this sub-domain.
While most sub-domains will only reach this level after passing through levels
2,3 and 4, some well-known domains may start directly on level 5. Some may
even start on level 6, if the organization has already some previous experience
with them.

In order to take this decision, the domain analyst should consider all infor-
mation that is available, and the decision should be agreed by all stakeholders.

4 The Basic Cycle of Domain Analysis for MDD

As discussed earlier, the domain analysis approach is iterative. While the first
iteration is where most of the effort is performed, in subsequent iterations the



208 D. Lucrédio et al.

developed assets are refined according to the development of transformers and
modelers for the sub-domains. This section describes the basic cycle of the do-
main analysis approach (Figure 2), focusing on what happens at each iteration.

Fig. 2. Basic cycle of the domain analysis approach for MDD. The outer arrows show
the boundaries between the analysis, design and implementation phases. The names in
the slices represent the activities. The names inside the arrows indicate what happens
at each iteration, for each activity.

Starting from the center, the process iterates, passing through the activities
described in Section 3: Domain planning, Domain modeling, Sub-domains identi-
fication, Domain validation and documentation, and Decision upon sub-domain
inclusion/exclusion. After each iteration, domain design and implementation
takes place, including the sub-domains that were identified, analyzed and se-
lected for inclusion in the previous activities.

Each iteration may lead to refinements and adjustments in the assets devel-
oped in the previous iterations. Each activity introduces refinements in different
assets, as shown in the large arrows in the center of Figure 2.

The Domain planning activity, at the beginning of each new iteration, revisits
the initial plan, including new considerations. It is also where a risk analysis is
performed, in order to determine if new iterations are needed.

In the Domain modeling activity, the domain analyst refines the features
model to consider the newly developed assets and the included sub-domains.
This refinement can also be made in parallel with domain design and implemen-
tation, updating the features as domain assets are developed.

The Sub-domain identification activity revisits the list of sub-domains after
the implementation and investigation performed on the previous iterations. New



Performing Domain Analysis for Model-Driven Software Reuse 209

confidence levels may be attributed to the identified sub-domains, leading them
to new decisions later. Also, new sub-domain candidates may be identified.

In the Domain validation and documentation activity, the existent documents
are updated to reflect the changes. Change management and version control
should be used to organize these documents.

During Decision upon sub-domain inclusion/exclusion, the information about
sub-domain candidates is reviewed and new decisions are made for them.

The result of these successive iterations is a continuous growth in the number
of domain assets and, mainly, in the level of confidence of the sub-domains
that are supported by automation. Also, more sub-domains are discarded, as
experience proves them difficult or impossible to automate.

5 Related Work

Knodel et al. [18] present an approach for using Model-Driven Development in
software product lines, called Pulse-MDD. This approach has many similarities
with our approach, also being iterative, but specially in the sense that the de-
velopment of transformations and modelers is tailored to the architecture of the
product line, and not on general concepts of the implementation technologies.
The results are therefore closer to an organization’s needs. However, in Pulse-
MDD this concern starts in the domain design phase, while in our approach we
argue that this should be considered earlier, during analysis, since we believe
that features models should be adapted to reflect the existence of MDD assets.

Czarnecki et al. [20] describe two techniques to support model-driven product
lines: features modeling and templates, to represent variability and commonality.
These techniques are complementary to our approach, and could be used to
describe domains and sub-domains for model-driven development.

Deelstra et al. [21] describe an approach for model-driven product lines de-
velopment. They argue that MDD can have several benefits to product lines.
However, they do not present details on how to systematically create transfor-
mations that lead from domain models to concrete software artifacts.

6 Conclusion

This paper describes a domain analysis approach that extends a previous work
[11] with activities for dealing with Model-Driven Development. The thesis be-
hind this work is that MDD can leverage reuse in domain engineering projects
to a different level, when compared to conventional code-based development.

The main contributions of this paper are the systematic activities and guide-
lines for identifying sub-domains for automation. It also presents a basic cycle for
carrying out these activities in a controlled and gradual way, helping to reduce
risks and maintaining the development manageable.

Two case studies were developed to help in the definition of the approach: one
for the web navigation domain, involving modeling the user navigation [22,23]
in web applications and generating the corresponding web pages and controller



210 D. Lucrédio et al.

code in Java/JSP/Servlets; and another one for the data administration domain,
including the modeling of data structures and generation of data access and
interface code for basic CRUD operations (Create, Retrieve, Update, Delete),
also in Java technology. The implementation of modelers and transformations
was performed using GMF (Graphical Modeling Framework) and JET (Java
Emitter Templates) technologies1.

As future work, the related activities of the domain design and implementation
phases are being developed, as well as the activities of the other two cycles.

Acknowledgments. This work was developed with the financial support from
CAPES and CNPq (process number: 475743/2007-5). The authors would also
like to thank the people who contributed with insights to this work with discus-
sions in worldofreuse.blogspot.com.

References

1. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical report cmu/sei-90-tr-21, Software
Engineering Institute, Carnegie Mellon University (1990)

2. Kang, K., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering. IEEE
Software 19(04), 58–65 (2002)

3. Neighbors, J.M.: Software Construction Using Components. Ph.d. thesis, Univer-
sity of California at Irvine (1980)

4. Lucrédio, D., Fortes, R.P.d.M., Almeida, E.S.d., Meira, S.R.d.L.: The Draco Ap-
proach Revisited: Model-Driven Software Reuse. In: VI WDBC - Workshop de
Desenvolvimento Baseado em Componentes, Recife - PE - Brazil (2006)

5. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: 29th International Conference on Software Engineering 2007
- Future of Software Engineering, Minneapolis, MN, USA, pp. 37–54. IEEE Com-
puter Society, Los Alamitos (2007)

6. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. IEEE
Computer 39(2), 25–31 (2006)

7. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., Karsai,
G.: Composing Domain-Specific Design Environments. IEEE Computer 34(11), 44–
51 (2001)

8. Lucrédio, D., Fortes, R.P.d.M., Alvaro, A., Almeida, E.S.d., Meira, S.R.d.L.: To-
wards a Model-Driven Reuse Process. In: 31st IEEE EUROMICRO Conference
on Software Engineering and Advanced Applications (SEAA), Work in Progress
Session, Porto, Portugal. IEEE Computer Society, Los Alamitos (2005)

9. Bézivin, J., Barbero, M., Jouault, F.: On the Applicability Scope of Model Driven
Engineering. In: Fourth International Workshop on Model-Based Methodologies
for Pervasive and Embedded Software (MOMPES 2007), Braga, Portugal, pp. 3–7.
IEEE, Los Alamitos (2007)

10. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transforma-
tion Generation By-Example. In: 40th Hawaii International Conference on System
Sciences (HICSS 2007), Hawaii (2007)

1 http://www.eclipse.org/gmf/ and http://www.eclipse.org/emft/projects/jet/



Performing Domain Analysis for Model-Driven Software Reuse 211

11. Almeida, E.S.d., Mascena, J.C.C.P., Cavalcanti, A.P.C., Alvaro, A., Garcia, V.C.,
Lucrédio, D., Meira, S.R.d.L.: The Domain Analysis Concept Revisited: A Practical
Approach. In: 9th International Conference on Software Reuse (ICSR), Torino,
Italy. Springer, Heidelberg (2006)

12. Griss, M., Favaro, J., d’Alessandro, M.: Integrating Feature Modeling with the
RSEB. In: The Fifty International Conference on Software Reuse (ICSR), Victoria,
Canada, pp. 76–85. IEEE/CS Press, Los Alamitos (1998)

13. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen,
T., DeBaud, J.: PuLSE: A Methodology to Develop Software Product Lines. In:
Symposium on Software Reusability (SSR), Los Angeles, USA, pp. 122–131. ACM
Press, New York (1999)

14. Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of Feature Modeling for
Product Line Software Engineering. In: 7th International Conference on Software
Reuse (ICSR): Methods, Techniques, and Tools, Austin, Texas, pp. 62–77 (2002)

15. Jarzabek, S.: Modeling multiple domains in software reuse. In: The 1997 Sympo-
sium on Software Reusability, Boston, Massachusetts, United States, pp. 65–74.
ACM Press, New York (1997)

16. Haddad, H., Tesser, H.: Reusable Subsystems: Domain-Based Approach. In: 2002
ACM Symposium on Applied Computing (SAC 2002), pp. 971–975. ACM, New
York (2003)

17. Maiden, N., Sutcliffe, A.: A computational mechanism for parallel problem de-
composition during requirements engineering. In: 8th International Workshop on
Software Specification and Design, Germany, pp. 159–163 (1996)

18. Knodel, J., Anastasopolous, M., Forster, T., Muthig, D.: An Efficient Migration
to Model-driven Development (MDD). Electronic Notes in Theoretical Computer
Science 137(3), 17–27 (2005)

19. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Reading (2000)

20. Czarnecki, K., Antkiewicz, M., Kim, C.H.P., Lau, S., Pietroszek, K.: Model-driven
software product lines. In: 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2005),
San Diego, CA, USA, pp. 126–127. ACM, New York (2005)

21. Deelstra, M., Sinnema, M., Van Gurp, J., Bosch, J.: Model Driven Architecture
as Approach to Manage Variability in Software Product Families. In: Aßmann,
U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 109–114.
Springer, Heidelberg (2005)

22. Newman, M.W., Landay, J.A.: Sitemaps, storyboards, and specifications: a sketch
of Web site design practice. In: DIS 2000. Proceedings of the conference on De-
signing interactive systems, New York City, New York, United States, pp. 263–274.
ACM Press, New York (2000)

23. Gitzel, R., Korthaus, A., Schader, M.: Using established Web Engineering knowl-
edge in model-driven approaches. Science of Computer Programming 66, 105–124
(2007)



Exploiting COTS-Based RE Methods:

An Experience Report

Nan Niu and Steve Easterbrook

Department of Computer Science, University of Toronto
Toronto, Ontario, Canada M5S 3G4

{nn,sme}@cs.toronto.edu

Abstract. This paper reports on an exploratory study of a key hypothe-
sis of enterprise resource planning (ERP) requirements engineering (RE)
adoption, namely that framing applications to the packaged RE model
leads to integral practices and economic development. We analyzed two
interrelated pilot projects developed for a business division of a large
IT company, using Oracle’s commercial off-the-shelf (COTS) applica-
tion implementation method (AIM). The study showed that AIM RE
improved team collaboration and project management experience, but
needed to make hidden assumptions explicit to support data visibility
and integrity. Our study can help practitioners generate more effective
and mature processes when exploiting COTS-based RE methods.

1 Introduction

Developing software with commercial off-the-shelf (COTS) components support
saves an organization from reinventing the wheel. The effective use of COTS
software requires a systematic method that facilitates the exploitation of the
benefits of COTS components while guarding against their technical and business
pitfalls, and we can better understand and optimize the COTS software if the
method is applied during requirements engineering (RE) activities [1].

The underlying philosophy of building an application on top of COTS com-
ponents is illustrated in Fig. 1. Two parties are involved: the COTS vendor and
the application developer, and their perspectives are labeled outside and inside
the parentheses in Fig. 1. The real world picture is a lot messier than Fig. 1.
The interplays between the modules present many risks for RE to assess. These
include mismatches between customer’s needs and COTS features, interferences
arising from unused components, and inconsistencies during integration of newly
built portions. Therefore, the reuse benefits claimed for COTS-based develop-
ment have to be weighed against the cost of mitigating the risks. From Fig. 1,
it is clear that the fitness of COTS-based RE is concerned with reconciling the
COTS system and the customer requirements. This fitness coin has two sides:

1. Choose what’s fit: procuring the COTS system that maximizes the reuse to
unused ratio [4]; and

2. Fit what’s chosen: tailoring the application development so that customiza-
tion and extension are achieved.

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 212–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Exploiting COTS-Based RE Methods: An Experience Report 213

Components
Unused

(burden)

Customized
Components

(whitebox reuse) (blackbox reuse)
Components

Reused

Unsupportables
(newly built)

COTS System Desired Application

Fig. 1. Exploiting COTS software in application development

The literature in COTS-based reuse has focused mainly on the first aspect,
and some fundamental issues of procuring software package requirements were
outlined in [3,7]. In contrast, the literature has paid little attention to the second
fitness criterion listed above, i.e., how to leverage the selected COTS package to
construct high quality applications. In practices like building enterprise resource
planning (ERP) systems, COTS candidates are relatively easy to identify among
market leaders, such as SAP AG, Oracle Corporation, and PeopleSoft Inc. Se-
lection tends to be a less pronounced bottleneck as experience is accumulated
and reported. The success of ERP projects then strongly hinges on how well
they align the business requirements and application components to the selected
COTS system. One solution is to take advantage of the RE guidelines defined
in the chosen ERP package. However, we are aware of no empirical studies that
investigate this COTS-based reuse tenet, nor the scope of its applicability. The
discipline remains under-explored. To address this gap, we conducted an evalu-
ation of underpinning hypotheses of COTS-based RE methods.

2 Study Context and Design

A generic RE model helps conceptualize corporate-wide integrated solutions in
that it offers defined processes, suggests process stakeholders, specifies steps to
accomplish tasks, indicates task dependencies, and provides standard tool sup-
port for ERP RE [1]. Once the project decision is made, the initial resources are
allocated, and COTS package is selected, there is little room for retreat. Among
42 Australian-based ERP implementations surveyed in [6], only one abandoned
the project. Most companies felt impelled to continue once committed. In an-
other word, after an ERP product is chosen, people live and die with their choice.
Given that RE is any ERP project’s most expensive stage [1], the RE knowledge
is not only needed but also vital to the field. Our study investigates the issues
arising when an organization makes the ERP RE model a live process.

The organization in our study is one of the largest PC manufacturers in the
Asia-Pacific region. Its headquarter is located in Beijing, PR China, and it has
approximately 10, 000 employees as of 2006. To honor confidentiality agreements,
we will call it ZT. ZT’s ERP implementations began in the late 1990s. Among the
motivations for ZT to adopt ERP were the need for a common IT platform and
the desire for process improvement. ZT took an incremental and evolutionary



214 N. Niu and S. Easterbrook

Table 1. Characteristics of ERP projects developed by AIM (release 3.0.0)

PMIS CRM
project duration Dec. 2000 – Apr. 2001 Jan. 2002 – Aug. 2002
project scope intra-division inter-division & intra-corporation
development environment JSP, Perl-CGI, IIS J2EE, Apache
team formation 1 project manager, 1 Oracle 1 project manager, 1 Oracle consultant,
breakdowns consultant, and 5 developers 7 developers, and 1 business analyst

ERP adoption strategy [6] to reduce risk. In particular, pilot ERP projects were
launched in one of ZT’s business divisions, allowing a trial-and-error inquiry to
collect experience and assess feasibility.

ZT selected Oracle’s application implementation method (AIM) [5] to imple-
ment its pilot ERP projects. Of particular interest to our RE study are the BP
(business process architecture), RD (business requirements definition), and BR
(business requirements mapping) processes of AIM [5]. We selected ZT’s pilot
ERP projects as an ideal case [2] to explore COTS-based RE methods for a num-
ber of reasons. First, ERP development is a critical case in testing COTS soft-
ware adoption. ERP projects demand considerable resources and commitment,
and are key to enduring business success. Second, AIM is representative in ERP
packages. This indicates that the lessons learned from our case are informative
about the experiences of the typical situation. Third, ZT’s ERP development
represent both a revelatory and a longitudinal case, in that pilot ERP studies
were seldom investigated and two sequentially-linked ZT projects were included
as units of analysis in our study design. Finally, ZT’s business division under
study was highly cooperative and generous with regards to our research, so we
anticipated a high degree of access to key stakeholders and projects’ data.

We derived several hypotheses from the philosophy of COTS software adop-
tion to guide our study design. Our central hypothesis was that: “Framing ERP
projects to the AIM RE model leads to integral RE practices and economic appli-
cation development.” This hypothesis reinforces the underpinning COTS-based
development philosophy: if the chosen ERP RE were not fully exploited, the ap-
plication development would remain separated and costly. Auxiliary hypotheses
were that AIM RE could improve team collaboration experience, project man-
agement experience, data visibility and integrity, the ability to map application-
specific requirements, and the flexibility of building customized applications.

To investigate the hypotheses, we chose two ERP projects from ZT’s pilot
repository: product management information system (PMIS) and customer re-
lationship management system (CRM). Table 1 summarizes some characteristics
of these projects, As was mentioned, ZT launched these projects as pilot trials of
an incremental ERP adoption process. These projects were sequentially-linked,
and it was ZT’s intention to assign similar management and development person-
nel to consolidate experience from the interrelated projects. Both developments
were Java-based, so the effects of technical environment were overshadowed by
business processes. Notably, a business analyst with good interpersonal skills
joined the CRM project. This was key to facilitating team collaborations.



Exploiting COTS-Based RE Methods: An Experience Report 215

3 Results and Concluding Remarks

Our data collection was based on semi-structured survey and artifact anal-
ysis [2]. The surveys involved project leaders, developers, AIM consultants,
and the formats ranged from structured to open-ended questionnaires. Arti-
facts in our analysis included business baselines, specifications, meeting minutes,
etc. Due to geographic constraints, most data collection was done via asyn-
chronous communication such as e-mails and Web forms. A few teleconferences
and on-site visits were held during our study. We took the actual project du-
ration into account because some experience or answers were only obvious in
hindsight.

In the two projects we studied, we found that the most critical success-enabler
was the strong commitment of upper management to the ERP projects, viewing
them as business change initiatives rather than self-possessed software projects.
Leveraging AIM’s documentation templates for project management is not triv-
ial. There are more than 150 templates defined in AIM 3.0.0, so making use of
each of them was clearly an overkill. One of ZT’s solutions was to adopt generic
documents and ignore detailed Oracle configurations. AIM 3.0.0 did not require
conceptual data models as mandatory project deliverables, partly because hav-
ing them was implicitly assumed in AIM. As a result, both ZT’s ERP projects
slowed down due to insufficient data specification and modeling in the RE stage.
The lesson learned was to make the hidden assumption explicit. Identifying and
resolving gaps between application requirements and ERP functionality were
defined in AIM’s BR process, which ZT found useful. The resolving methods
included documenting workarounds, creating alternative possibilities, using ap-
plication extensions, and changing the underlying business process [5]. The ERP
functionality reuse rate [4] was estimated to be slightly over 50% in each of ZT’s
pilot projects. In ZT’s trials, the biggest gain was probably developing two dif-
ferent kinds of ERP applications, PMIS and CRM, using AIM. On one hand,
standard ERP functionality and process were bound early in the package to guide
blackbox reuse. On the other hand, AIM allowed late binding (customization)
through just-in-time requirements determination [3].

In summary, some auxiliary hypotheses were confirmed while others were
under-explored. We considered having two sequentially-linked units of analysis
was important because ZT was able to learn from its own mistakes. In terms of
our central hypothesis, we felt that the study supported the claim. We suggest
that, when possible, stick with the ERP vendor’s architecture approach to better
manage complexity and support requirements reuse. The application team could
use the ERP framework to develop the first blueprint version, which reflects basic
requirements and is unlikely to be met with disagreement. More sophisticated
requirements could be gradually incorporated and controversial issues could be
systematically addressed in the incremental adoption process. Finally, it is crucial
to keep the requirements baseline evolving along with the stakeholders’ changing
desires and needs.



216 N. Niu and S. Easterbrook

References

1. Daneva, M.: ERP RE practice: lessons learned. IEEE Softw. 21(2), 26–33 (2004)
2. Easterbrook, S., et al.: Selecting empirical methods for software engineering research.

In: Guide to Advanced Empirical Software Engineering. Springer, Heidelberg (2007)
3. Finkelstein, A., Spanoudakis, G., Ryan, M.: Software package requirements & pro-

curement. In: Wkshp. on Softw. Spec. and Design, pp. 141–145 (1996)
4. Frakes, W.B., Terry, C.: Software reuse: metrics and models. ACM Computing Sur-

veys 28(2), 415–435 (1996)
5. Oracle application implementation method (release 3.0.0). Oracle Corp. (1999)
6. Parr, A.N., Shanks, G.: A taxonomy of ERP implementation approaches. In: Hawaii

Intl. Conf. on System Sciences, p. 7018 (2000)
7. Rolland, C., Prakash, N.: Matching ERP system functionality to customer require-

ments. In: Intl. Symp. on RE, pp. 66–75 (2001)



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 217–220, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Towards Reusable Automation System Components 

Thomas Aschauer, Gerd Dauenhauer, and Wolfgang Pree 

C. Doppler Laboratory Embedded Software Systems, University of Salzburg 
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria 

firstname.lastname@cs.uni-salzburg.at 

Abstract. In this paper we present a domain specific language for describing an 
automation system, that is, its hardware and software components. These do-
main components form the basis of large-scale reuse so that specific automation 
systems can be configured efficiently.  

Keywords: Component reuse, domain specific modeling language. 

1   Context and Motivation 

Our research group cooperates with an industry partner that is a dominant player in 
the area of so-called engine test bed systems that are used, for example, in the auto-
motive industry for developing and optimizing combustion engines. Engine test bed 
systems are specific automation systems. Typical functions of an engine test bed sys-
tem are the parameterization and visualization of its real-world components, such as 
the engine under test, and the sensors, as well as the measured values. The corre-
sponding software has evolved over the last two decades and comprises about 1.5 mil-
lion lines of code, mainly written in C++ and C. Originally, one of the main goals was 
to improve the current system’s usability. A major hurdle for the users of the current 
system is the fact that the domain entities they have in mind (such as engines, dyna-
mometers, measurement and conditioning devices) do not match well with the entities 
in its user interface. For example, a person who configures a test bed would like to 
deal with a graphical representation of the test bed entities, with the parameters and 
measured values associated with the physical components. In a typical setup there are 
about 10,000 parameters with about 120,000 values to be set correctly. In other 
words, the domain components should also be the entities the user deals with. The 
domain components should be reusable assets that allow an efficient configuration of 
a specific engine test bed system. For that purpose we defined the Domain Compo-
nent Description Language (DCDL) sketched in the next section. 

2   Domain Component Description Language (DCDL) 

DCDL is a domain specific language for describing the components of a test bed 
automation system, either as text or in an equivalent visual form. For the sake of brev-
ity we use the textual representation below. 

The primary entities of DCDL are components which describe the structure and 
the behavior of automation system components such as the engine under test or 



218 T. Aschauer, G. Dauenhauer, and W. Pree 

measurement devices, but also the relevant properties of an automation system's 
software components. The electric current is an example of a physical component 
property. The explicit description of hardware and software properties is required to 
check the validity of compositions and thus to ensure the consistency of the DCDL 
model. 

Consider, for example, a temperature sensor and a measurement device. The sensor’s 
DCDL description comprises its plug’s shape and its emitted electrical signal. The 
measurement device’s description also comprises its plug’s shape and its accepted elec-
trical signal. If the sensor and the measurement device are connected in the test bed de-
scription, a validity check is performed that only allows the sensor to be plugged into 
the measurement device if both the plug shape and the electrical signals match. 

 
Viewing Different Component Aspects. The various aspects of a DCDL component 
can be grouped and component editors typically show them in separate views: 

• Physical View: Represents physical and if applicable electrical aspects such as 
plugs and wires (see figure 1). 

• Functional View: Represents functional aspects, such as PID controllers and limit 
monitors. This view is similar to dataflow modeling languages such as Simulink [1]. 

• Parameter View: Represents variability aspects in terms of name/value pairs, e.g. 
plug shape descriptions or PID controller values. 

• Operation View: Visualizes a component during the operation of the test bed auto-
mation system, for example, by showing relevant measurement values and chang-
ing their color in case they are not within predefined limits. 

 

Fig. 1. Sample physical view of a test bed 

DCDL Component Definition by Example. We use a table format to illustrate the 
definition of DCDL components (see figure 2). The table shows two simplified En-
gines, E1 and E2. Possible properties of engine components are specified in columns. 
It is not mandatory to define values for each property. E2, for example, does not spec-
ify the property Ignition. 

Category: Engine 
Component Cylinders Inertia Ignition 
E1 8 1.06 kgm2 Plug 15 
E2 6 1.04 kgm2  

Fig. 2. Two sample DCDL components 



 Towards Reusable Automation System Components 219 

DCDL offers mechanisms to reuse component definitions. Interviews with domain 
experts showed that for them copying and pasting a component definition is a natural 
way of reuseing it. Therefore DCDL supports what is called prototypical inheritance 
in the object-orientated programming paradigm [2]. Figure 3 shows an engine E3, 
which is defined by copying the definition of engine E1. The properties Cylinders and 
Ignition are inherited and their values are unchanged, the property Inertia is inherited 
but its value was changed, and a new property Nmax is added. 

Category: Engine 
Component Cylinders Inertia Nmax Ignition 
E1 8 1.06 kgm2  Plug 15 
E3     E1 8 1.05 kgm2 12,000 rpm Plug 15 

Fig. 3. Component extension via prototypical inheritance 

DCDL-Based Composition. DCDL was designed so that the compatibility of automation 
system components can be checked. When components are reused to assemble a specific 
test bed system, the DCDL type system ensures that users can define only valid composi-
tions. The following concepts form the backbone of the type compatibility check: 

• Components are assigned to user defined categories. The type system treats compo-
nents of different categories as incompatible. Since all components in figures 2 and 3 
are classified as Engine, they are of the same category and are, for example, not 
compatible to any component of another category such as Measurement Device. 

• Every view defines a separate type system. The physical view, for example, defines 
compatibility between plugs in terms of plug shape. The parameter view’s type 
system is analogous to that of imperative programming languages with strong type 
checking such as Java. 

Abstract DCDL Components. DCDL offers the possibility to define types and val-
ues of properties as unspecified. Components with at least one unspecified property 
are abstract components. A valid DCDL model must not contain abstract components. 
Abstracting from concrete components should further support the reuse of component 
definitions. The properties of abstract components are listed, but not yet typed. The 
following example shows how an abstract engine AbstractEngine could be modeled. 

COMPONENT AbstractEngine CATEGORY 'Engine' 
  Nmax : UNSPECIFIED := UNSPECIFIED 
END 

Hierarchical Composition. DCDL components can be hierarchically composed of 
other components. The dynamometer example shows how a dynamometer D and an 
abstract test bed AbstractTestBed are defined. AbstractTestBed is composed of D and 
AbstractEngine. Since AbstractEngine is an abstract component, AbstractTestBed is 
also abstract. The property Nmax of engine AbstractEngine is used to express the con-
straint that only engines with a lower maximum rotation speed than the dynamometer 
may be mounted. Although unspecified properties may be used to express constraints, 
these constraints can not be enforced until all referenced properties are fully specified 
in components that are based on abstract components. 



220 T. Aschauer, G. Dauenhauer, and W. Pree 

COMPONENT D CATEGORY 'Dynamometer' 
  Nmax : REAL := 20000[rpm] 
END 

COMPONENT AbstractTestBed CATEGORY 'Test bed' 
  Engine : AbstractEngine 
  Dyno : D 
  Dyno.Nmax >= Engine.Nmax 
END 

From Abstract to Concrete Components. Finally we illustrate the transformation of 
an abstract component to a specific one. First, an engine E1 is defined whose proper-
ties have the same names as the ones of AbstractEngine. Second, SampleTestBed is 
created as a clone of AbstractTestBed. SampleTestBed redefines the property Engine 
by replacing the component AbstractEngine with E1. SampleTestBed is a concrete 
component, since it neither contains abstract components nor does it contain unspeci-
fied properties itself. 

In the context of SampleTestBed, AbstractEngine is substitutable by E1 since a) 
both components are of category Engine, b) both components have a property Nmax 
and c) D.Nmax has the same data type and unit as E1.Nmax. All parameters are speci-
fied and thus the constraint inherited from AbstractTestBed can be enforced. 

COMPONENT E1 CATEGORY 'Engine' 
  Nmax : REAL := 12000[rpm] 
END 

COMPONENT SampleTestBed LIKE AbstractTestBed 
  Engine : E1 
END 

3   Related Work 

There is a trend in the embedded industry to explicitly describe the overall computing 
infrastructure, the static hardware and software setup as well as the interactions be-
tween the components. One example is AUTOSAR [3], an initiative by the automo-
tive industry. As automation systems differ from automotive computing platforms, the 
description differs, though the vision is similar. Modeling languages such as UML 
and SysML [4] could be harnessed for the visual representation of CDCL.  

References 

1. The MathWorks Simulink, http://www.mathworks.com/products/simulink 
2. Abadi, M., Cardelli, L.: A Theory of Objects, 2nd edn. Monographs in Computer Science. 

Springer, New York (1998) 
3. AUTOSAR (an acronym abbreviating AUTOmotive open System ARchitecture), http:// 

www.autosar.org 
4. Object Management Group: OMG Systems Modeling Language (OMG SysMLTM), Unified 

Modeling Language (UML), http://www.omg.org 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 221–232, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

An Approach to Domain-Specific Reuse 
in Service-Oriented Environments 

Jianwu Wang1,2, Jian Yu1, Paolo Falcarin1, Yanbo Han3, and Maurizio Morisio1 

1 Software Engineering Research Group, Dept. of Control and Computer Engineering, 
Politecnico di Torino, 10129, Torino, Italy 

2 San Diego Supercomputer Center, University of California, San Diego, 92093, USA 
3 Research Centre for Grid and Service Computing, Institute of Computing Technology, 

Chinese Academy of Sciences, 100080, Beijing, China 
wangjianwu@gmail.com, 

{jian.yu,paolo.falcarin,maurizio.morisio}@polito.it, 
yhan@ict.ac.cn 

Abstract. Domain engineering is successful in promoting reuse. An approach to 
domain-specific reuse in service-oriented environments is proposed to facilitate 
service requesters to reuse Web services. In the approach, we present a conceptual 
model of domain-specific services (called domain service). Domain services in a 
certain business domain are modeled by semantic and feature modeling tech-
niques, and bound to Web services with diverse capabilities through a variability-
supported matching mechanism. By reusing pre-modeled domain services, service 
requesters can describe their requests easily through a service customization 
mechanism. Web service selection based on customized results can also be opti-
mized by reusing the pre-matching results between domain services and Web ser-
vices. Feasibility of the whole approach is demonstrated on an example. 

Keywords: Domain-Specific Reuse, Domain Service Model, Service Capability 
Diversity, Variability-Supported Service Matching, Service Customization. 

1   Introduction 

Service orientation is becoming a dominant paradigm in distributed computing. There are 
a large amount of available Web services on the Internet, and there will be more. In the 
bioinformatics domain, for instance, the number of Web services has added up to over 
3000 [1]. On the one hand, the abundance of Web services facilitates on-demand applica-
tion construction; on the other hand, since Web services are implemented and maintained 
independently, slight differences among them bring difficulties for their (re)use. 

We will use a simplified example from the weather service domain throughout the 
paper (see Fig. 1). There are over 15 real Web services (including 179 independent 
operations)1 providing weather forecast on the Internet. When the number of Web 

                                                           
1 An incomplete list can be found at 
  http://wangjianwu.googlepages.com/webservicelistforweatherforecast 



222 J. Wang et al. 

services with similar functionality is huge, it is very difficult for service requesters to 
directly select proper services and reuse them. 

We can then split the problem into two parts: 

1) Similarity and diversity of service requests2: As shown in Fig.1, Req1 and Req2 are 
two similar yet different service requests. For instance, wind speed information is 
mandatory in Req1 but not in Req2; the target location areas and the preferred ways 
to describe locations are also different. A key problem at the service request level 
is how to facilitate service requesters to describe their service requests in a certain 
business domain where service requests are similar yet diverse. 

2) Similarity and diversity of Web services: Also as shown in Fig.1, WS1 and WS2 are 
two similar yet different Web services. For instance, WS1 can only forecast 
weather in the U.S., while WS2 can forecast weather worldwide; their input pa-
rameters for location are also different; moreover, WS2 has an additional output: 
wind speed. A key problem at the Web service level is how to optimize on demand 
selection of executable Web services in a service-oriented environment where Web 
services are abundant yet diverse in capability (namely Input, Output and QoS). 

 

Fig. 1. Two levels of service usage in service-oriented environments 

To tackle the above problems, we propose an approach to domain-specific reuse in 
service-oriented environments based on our previous work [2, 3]. The core of this 
approach is a conceptual model of domain-specific services (called domain service), 
which acts as a broker between service requesters and Web services. The following 
advantages can be obtained: 

1) Simplifying service request description by reusing pre-modeled domain services: 
Feature modeling techniques [4, 5] are used in domain services to model the com-
monalities and variabilities of similar service capabilities. So instead of describing 
service requests from scratch, particular service requests can easily be described by 
reusing pre-modeled domain services. 

                                                           
2 Service requests in this paper are restricted to single services. Complex service requests can 

be met through service composition, which is beyond the scope of this paper. 



 An Approach to Domain-Specific Reuse in Service-Oriented Environments 223 

2) Accelerating service request satisfaction by reusing pre-matching results between 
domain services and Web services: With pre-modeled domain services, Web ser-
vices can also be matched to proper domain services in advance. Then the match-
ing between particular service requests and Web services can be optimized by reus-
ing the pre-matching results between domain services and Web services. 

The rest of this paper is organized as follows. Firstly, we discuss related work in 
Section 2. Then an overview of the approach is given in Section 3. Two parts of our ap-
proach, namely domain engineering process and application engineering process, are ex-
plored in detail in the following two sections. Finally, we conclude the paper in Section 6. 

2   Related Work 

Our approach can be seen as a kind of domain modeling applied to service-oriented 
environments in order to facilitate service request description and service matching. 

Recently, some traditional approaches in requirement engineering researches have 
been applied on service request modeling, such as goal oriented [6] and value based 
[7]. Yet they do not tackle how to reuse service requests. There are also some re-
searches addressing the importance of combining top-down requirement refinement 
and bottom-up existing service resource reuse [8, 9]. Our work also follows this way, 
and our work emphasizes the variability modeling of similar services which is omitted 
in the above work. 

Feature modeling in domain engineering approaches has been proved to be suc-
cessful in representing reusable and configurable requirements for its good capacity to 
express commonalities and variabilities [4, 5]. Recently, some effort has been put into 
importing feature modeling to model some aspects of commonalities and variabilities 
in service-oriented environments. In [10], each feature represents a service operation, 
which can support operation variabilities in similar systems. Feature modeling is also 
used to express non-functional properties [11, 12] and implementation techniques [13] 
of services. But none of the above proposals deal with service capability variability, 
which is a main difficulty for service requesters to directly select Web services. 

There has been much research on service matching [14, 15, 16], however they usu-
ally assume that there is a given service request and an available service set, and em-
phasize on matching degree and theory foundation. How to reuse pre-matching results 
to facilitate future service matching is still an open challenge. 

There are also some works on service virtualization [17, 18], which focus on how 
to abstract similar services for better (re)use. However, the abstraction mechanisms 
are rather rigid. For example, WS1 and WS2 in Fig. 1 can not be abstracted into one 
abstract weather forecast service for the capability differences between them. In a 
service-oriented environment where there are abundant Web services with diverse 
capabilities, these mechanisms can only bring limited promotion in reuse. 

3   Overview of the Approach 

Referring to the software development process in traditional domain engineering 
approaches [5], our approach also consists of a domain engineering process and an 



224 J. Wang et al. 

application engineering process (shown in Fig. 2). Activities (rectangles in Fig. 2) and 
deliverables (italics in Fig.2) in this approach will be outlined in this section and ex-
plained in detail in the following two sections. 

 

Fig. 2. Overview of the approach to domain-specific reuse in service-oriented environments 

Domain Engineering Process: This process is to define domain services and bind 
them with Web services for future reuse. Firstly, domain services are modeled by 
domain experts through domain service analysis. Secondly, Web services are bound 
to proper domain services through service capability matching. 

Application Engineering Process: This process is to reuse the deliverables generated 
in the domain engineering process in order to improve the satisfaction of particular 
service requests. Particular service requests are firstly described by customizing 
proper domain services, which can be made easier through reusing pre-modeled do-
main services. Secondly, suitable Web services are bound to customized services by 
customized service matching, which can be optimized through reusing pre-matching 
results between domain services and Web services. Then each Web service bound to 
customized services can be executed to perform the corresponding service requests. 

For the applicable domains, our practice shows that the approach is suitable for the 
business (sub)domains, such as bioinformatics and travel information domain, which have 
the following characteristics: 1) Service requesters want to describe their personal-ized 
requests; 2) It is easy to define domain scope, and model domain on-tologies and services; 
3) There are a large amount of available Web services provided by different organizations. 

4   Domain Engineering Process 

To discuss our domain engineering process, this section is divided into two subsections 
by its main activities. 



 An Approach to Domain-Specific Reuse in Service-Oriented Environments 225 

4.1   Domain Service Analysis 

Referring to traditional domain analysis activities, the domain service analysis also 
involves two main sub activities: domain service identification and domain service 
modeling. The first sub activity can refer to existing approaches, such as [8], and is 
omitted here. In the second sub activity, capability information of identified domain 
services is modeled for the matching with that of Web services. Here, the commonal-
ities and variabilities of domain service capabilities are modeled by features to facili-
tate future service request description, and parameter semantics of domain services 
are annotated by domain ontology concepts for automatic and exact service matching. 
Besides, since domain ontologies express shared concepts in the domain, it is easy for 
service requesters to understand domain services. 

To discuss our domain services in more detail, related formal definitions are given be-
low, and the corresponding schemas in XML can easily be obtained from the definitions: 

Def. 1 (Feature): feature = < FeatureNode, FeatureEdge >, FeatureNode = {super-
node}∪SubFeatureNode, SubFeatureNode ∈ {subnode1, … , subnoden}, Featu-
reEdge = { <sn, sfn, ft> | sn=supernode, sfn∈SubFeatureNode, ft∈{Man, Opt, XOR, 
OR}}. subnodei and the corresponding feature edges start from subnodei also form a 
feature (called sub feature). Then a feature with all its descendent features forms a 
feature tree. 

Def. 2 (Domain Service): domainservice = < inputFeature, outputFeature, qosFea-
ture >. Hereinto, inputFeature, outputFeature and qosFeature are all features. And all 
the elements of SubFeatureNode of inputFeature/outputFeature/qosFeature are anno-
tated with proper domain ontology concepts. 

 

Fig. 3. A domain service example with capability variability 

For the example of weather forecast, a simplified domain service in weather service 
domain, WeatherForecast, is modeled (shown in Fig. 3). For instance, typical location 
of WeatherForecast is expressed as ZipCode or LocationName, but not both. They are 
thus modeled as two sub features of Location, and the feature type is XOR. The par-
tial formal definition of WeatherForecast is as follows: 



226 J. Wang et al. 

WeatherForecast = <inputFeatureOfWF, outputFeatureOfWF, qosFeatureOfWF> 
inputFeatureOfWF = < { InputOfWF, Date, Location }, { <InputOfWF, Date, 

Man>, <InputOfWF, Location, Man > } > 
locationFeature = < { Location, ZipCode, LocationName }, { <Location, ZipCode, 

XOR>, <Location, LocationName, XOR> } > 
... 

4.2   Domain Service Matching 

Instead of separate domain implementations according to domain models in tradi-
tional domain engineering approaches, we think it is better to keep an eye on available 
Web services as well, which is also addressed in [8, 9]. So we employ a service 
matching mechanism to carry out domain implementation in service-oriented envi-
ronments, which matches and binds domain services with proper executable Web 
services for future reuse. This way also realizes the seamless integration between the 
outputs from domain analysis and the inputs needed for domain implementation. 

To enable automatic and exact service matching with domain services, techniques 
of semantic Web services [14, 19] are used. Parameters of Web services are all anno-
tated with domain ontology concepts. Our definition on semantic Web service is 
given below and Fig.4 shows the corresponding semantic Web services of WS1 and 
WS2. Note that, to be more precise, it should be semantic Web service operation. We 
use semantic Web service just for short. 

Def. 3 (Semantic Web Service): sws = <invokeUrl, InputPara, OutputPara, QoSPara>. 
Hereinto, invokeUrl is the URL for service invocation; InputPara/OutputPara/QoSPara 
is the set of Input/Output/QoS parameters which are all annotated with proper domain 
ontology concepts. 

 

Fig. 4. Examples of semantic Web services 

To adapt to the capability diversity of similar Web services, we employ a variability-
supported service matching mechanism. Each domain service is shown as a feature 
tree. And a feature tree can be seen as a kind of AND/OR tree [20] extended with 
optional and XOR nodes. Then the solvability policy of feature trees can be obtained 
by extending that of AND/OR trees. Hence the principle of our matching is to firstly 
semantically match the parameters of Web services with those of domain services, 
and then to estimate the solvability of domain service feature trees. If a domain ser-
vice feature tree is solvable on the condition of a certain Web service’s capability, it 
means that the Web service’s capability belongs to the capability variability (namely 



 An Approach to Domain-Specific Reuse in Service-Oriented Environments 227 

possible capability set) of the domain service, then we say the Web service matches 
the domain service. 

The following formal definitions will be firstly given for detailed discussion. 

Def. 4 (Concept Matching): Suppose concept1 and concept2 are two ontology con-
cepts. If concept1 is equal to or subclass of concept2, then concept1 matches con-
cept2, which is written as cm(concept1, concept2) = TRUE. 

Def. 5 (Concept Set Matching): Suppose Concept1 and Concept2 are two ontology 
concept sets. If an injective function exists: {<x, y>| x∈Concept1, y∈Concept2, 
cm(x, y) = TRUE}, then Concept1 matches Concept2, which is written as 
csm(Concept1, Concept2) = TRUE. 

Def. 6 (Feature Tree Solvability Policy): If the feature type between one feature fea-
ture and its sub features is mandatory or optional, then feature is solvable if and only if 
all its mandatory sub features are solvable; if the feature type is OR, then feature is 
solvable if and only if one or more of its sub features are solvable; if the feature type is 
XOR, then feature is solvable if and only if one of its sub features is solvable. A feature 
tree is solvable if and only if its root feature is solvable. 

Def. 7 (Feature Solvability): Suppose feature is a feature and Feature is a feature 
set. Given all the elements of Feature are solvable, if feature is solvable according to 
Def. 6, then feature is solvable on the condition of Feature, which is written as 
fs(Feature, feature) = TRUE. 

Def. 8 (Semantic Solvability of Feature): Suppose feature is a feature, Concept is a 
concept set. If there exists a feature set Feature (its annotated concept set is written as 
FeatureConcept) such that (csm(Concept, FeatureConcept) ∧ fs(Feature, feature)) = 
TRUE, then feature is semantically solvable on the condition of Concept, which is 
written as ss(Concept, feature) = TRUE. 

From the above definitions, we can get the following function to estimate the solv-
ability of a feature y on the condition of a concept set x. It is a recursive function that 
the solvability of a feature depends on its semantic matching or the solvability of its 
sub features. 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=∧∉∨∨∨∨
=∧∉∧∧¬∧¬∨

∨¬∧∧∧¬∨
¬∧∧¬∧∨

=−∧
=∧∉∧∧∧∨

∈

=

)))(,(())(,(...))(,())(,(),(

)))(,(()))(,(...))(,())(,((...

)))(,(...))(,())(,((

)))(,(...))(,())(,((),(

)))()(,((

)))(,(()))(,(...))(,())(,((),(

),(

),(

21

21

21

21

1

111211

ORySubyftLFyysubxssysubxssysubxssyxm

XORySubyftLFyysubxssysubxssysubxss

ysubxssysubxssysubxss

ysubxssysubxssysubxssyxm

OptySubySubyft

ManySubyftLFyysubxssysubxssysubxssyxm

LFyyxm

yxss

n

n

n

n

n  

Hereinto, LF is the leaf feature set whose elements do not have sub features; Sub(y) is 
the sub feature set of y whose elements are sub1, …, subn; Sub1(y) is a sub set of 
Sub(y) whose elements are sub11, …, sub1n; ft(y, Sub(y)) is the feature type between 
feature y and its sub features. 

Def. 9 (Service Matching): Suppose sws is a semantic Web service, and ds is a domain 
service. The annotated concept set of sws’s Input/Output/QoS parameters is written as 



228 J. Wang et al. 

sws.InputConcept/OutputConcept/QoSConcept. If (ss(sws.InputConcept, ds.inputFeature) 
∧ ss(sws.OutputConcept, ds.outputFeature) ∧ ss(sws.QoSConcept, ds.qosFeature)) = 
TRUE, then sws matches ds, which is written as sm(sws, ds) = TRUE. 

The concrete service matching algorithm can easily be obtained from the above defi-
nitions and is then omitted for the space limitation. 

Besides semantic and variability-supported, another property of the matching 
mechanism can also be obtained from the definitions, called Additional Parameter 
Allowed. Based on the above definitions, if csm(Concept1, Concept2) = TRUE, and 
Concept1 ⊆ Concept1’, then csm(Concept1’, Concept2) = TRUE. So domain services 
can match Web services with additional parameters. This property fits the 
characteristic that independent Web services may have additional parameters com-
pared to pre-modeled domain services. 

For the above weather forecast example, both SWS1 and SWS2 matches domain service 
WeatherForecast. Let’s take the input matching between WeatherForecast and SWS1 for 
instance (Fig. 5), the annotated concept set of input parameters of SWS1 matches feature 
set:{#Date, #USZipCode} (based on Def. 4), and the input feature of WeatherForecast is 
semantically solvable on the condition of {#Date, #USZipCode} according to Def. 8. So 
ss(SWS1.InputConcept, WeatherForecast.inputFeatureOfWF) = TRUE. 

 

Fig. 5. Example of service matching between domain services and semantic Web services 

5   Application Engineering Process 

To reuse the deliverables generated in the above domain engineering process to 
facilitate the satisfaction of particular service requests, a corresponding application 
engineering process is discussed in this section. We will discuss it through two 
subsections according to its main activities. 

5.1   Domain Service Customization 

With reusable domain services, service requesters need not describe their requests from 
scratch. Yet there still may be a few differences between particular service requests and 
domain services. So we employ a domain service customization mechanism to enable 
service requesters to describe their requests by reusing domain services. 



 An Approach to Domain-Specific Reuse in Service-Oriented Environments 229 

Based on existing works on feature configuration [21], service customization op-
erations are defined, which can be classified into three categories: Add (e.g. add one 
mandatory sub feature), Delete (e.g. delete one optional sub feature) and Configure 
(e.g. select one sub feature from a XOR feature). All operations can be listed and 
formally defined following the way of the example below. 

FeatureNodeSubFeatureFeature eatureselectXORF ⎯⎯⎯⎯⎯ →⎯×  : { <x, y, z> | 
x∈Feature, y∈x.SubFeatureNode, z∈Feature, z.FeatureNode = { y }∪{ 
x.supernode }, z.FeatureEdge = { <x.supernode, y, Man> } } 

For Req1 in the example of weather forecast, the service requester can customize 
WeatherForecast by adding wind speed as a sub feature of its output and selecting the 
sub feature LocationName of the Location feature. The customized result is shown in 
Fig.6. For the features she does not customize (such as Centigrade or Fahrenheit), it 
means they do not concern her, so each possibility of their variabilities is suitable to her. 

 

Fig. 6. An example of customized WeatherForecast domain service 

5.2   Customized Service Matching 

To perform particular service requests, not like product configuration on a separately 
implemented software in traditional domain engineering approaches, a mechanism to 
match and select Web services according to the customized service is employed, 
which can reuse the available Web services. 

The service matching algorithm in Section 4 can also be applied in the customized 
service matching, and we find that pre-matching results of domain services is reusable 
for some customization operations which can then optimize the service selection. 

Theorem 1: Suppose ds is a domain service, op is a customization operation on ds, 
and SWS is a semantic Web service set. The customization result of ds by op is writ-
ten as op(ds). For ,|{1 SWSxxSWS ∈=  }),( TRUEdsxsm =  and ,|{2 SWSxxSWS ∈=  

}))(,( TRUEdsopxsm = , if the following proposition is true, then SWS2 ⊆  SWS1: 



230 J. Wang et al. 

)).,(())).(,()((

)).,(())).(,()((

)).,(())).(,()((

qosFeaturedsxfsqosFeaturedsopxfsx

ureoutputFeatdsxfsureoutputFeatdsopxfsx

reinputFeatudsxfsreinputFeatudsopxfsx

⇒∀∧
⇒∀∧

⇒∀
 

Proof: For each element of SWS2: sws, ss(sws.InputConcept, op(ds).inputFeature)= 
TRUE, which is based on Def. 9. Then, there exists a feature set (written as Feature) 
and a corresponding annotated concept set (written as FeatureConcept), such that 
(csm(sws.InputConcept, FeatureConcept) ∧ fs(Feature, op(ds).inputFeature)) = TRUE. 
If the above proposition is true, then the following proposition is also true: ,(( Featurefs  

)).,(())).( reinputFeatudsFeaturefsreinputFeatudsop ⇒ . So (csm(sws.InputConcept, Fea-

tureConcept) ∧ fs(Feature, ds.inputFeature)) = TRUE. Then ss(sws.InputConcept, 
ds.inputFeature) = TRUE, which is according to Def. 8. In similar ways, we can 
know that ss(sws.OutputConcept, ds.outputFeature) = TRUE and ss(sws.QoSConcept, 
ds.qosFeature) = TRUE. So sm(sws, ds) = TRUE, namely sws∈SWS1. 

For each customization operation, we can formally know whether it makes the propo-
sition of Theorem 1 true. So, if a domain service is customized by the operations 
making the proposition true, the service selection for the customized service can be 
optimized. Not all the available Web services, but only Web services bound to the 
corresponding domain service need to be tested whether they match the customized 
service. Moreover, Web services can be matched automatically and executed in-
stantly, then particular service requests can be performed on-the-fly. 

For Req1 in the example of weather forecast, both of the needed customization op-
erations (namely addNewFeature and selectXORFeature) meet the proposition of 
Theorem 1, so only the Web services bound to WeatherForecast need to be tested 
again using the matching algorithm in sub section 4.2. Of SWS1 and SWS2, only 
SWS2 matches the customization result. So it can be executed to perform Req1. 

6   Conclusions 

To promote service reuse from a domain oriented perspective, an approach to domain-
specific reuse in service-oriented environments is proposed. Hereinto, domain ser-
vices in a certain business domain are modeled and matched to proper Web services 
for reuse in the domain engineering process. Then, new service requests in the same 
domain can be easily satisfied by reusing pre-modeled domain services and pre-
matching results in the application engineering process. Feasibility of the whole 
approach has been primarily validated through running some sample services in a 
browser/server architecture-based prototype.  

For future work, since the diversity of real service requests and Web services is 
very complicated, our approach needs to be extended to have more expressive power. 
We are supporting more complex feature models, such as feature constraints, and 
more complex service capability description, such as service precondition and effect. 
Moreover, a more robust and friendly tool, and more and in-depth empirical experi-
ments will be implemented to obtain evidence, which can testify the advantages of 
our approach. 



 An Approach to Domain-Specific Reuse in Service-Oriented Environments 231 

Acknowledgement 

This research is partially funded by the National Natural Science Foundation of China 
(NSFC) under grand No. 60573117. 

References 

1. Hull, D., Zolin, E., et al.: Deciding Semantic Matching of Stateless Services. In: 21st Na-
tional Conference on Artificial Intelligence and 18th Innovative Applications of Artificial 
Intelligence Conference (AAAI 2006), pp. 1319–1324 (2006) 

2. Han, Y., Geng, H., et al.: VINCA - A Visual and Personalized Business-level Composition 
Language for Chaining Web-based Services. In: Orlowska, M.E., Weerawarana, S., 
Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 165–177. Springer, 
Heidelberg (2003) 

3. Wang, J., Yu, J., et al.: A Service Modeling Approach with Business-Level Reusability 
and Extensibility. In: 1st IEEE Int. Workshop on Service-Oriented System Engineering, 
pp. 23–28 (2005) 

4. Kang, K.C., Cohen, S.G., et al.: Feature-Oriented Domain Analysis Feasibility Study. 
Technical Report: SEI-90-TR-21. Pittsburgh, Software Engineering Institute, Carnegie 
Mellon University (1990) 

5. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and Applica-
tions. Addison-Wesley, New York (2000) 

6. Lo, A., Yu, E.: From Business Models to Service-Oriented Design: A Reference Catalog 
Approach. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. 
LNCS, vol. 4801, pp. 87–101. Springer, Heidelberg (2007) 

7. Gordijn, J., Yu, E., et al.: E-service design using i* and e3 value modeling. IEEE Soft-
ware 23(3), 26–33 (2006) 

8. Arsanjani, A.: Service-Oriented Modeling and Architecture (2004), http://www.ibm. 
com/developerworks/library/ws-soa-design1/ 

9. Maiden, N.: Servicing Your Requirements. IEEE Software 23(5), 14–16 (2006) 
10. Chen, F., Li, S., et al.: Feature Analysis for Service-Oriented Reengineering. In: 12th Asia-

Pacific Software Engineering Conference (APSEC 2005), pp. 201–208 (2005) 
11. Wada, H., Suzuki, J., et al.: A Feature Modeling Support for Non-Functional Constraints 

in Service Oriented Architecture. In: 2007 IEEE Int. Conf. on Services Computing (SCC 
2007), pp. 187–195 (2007) 

12. Fantinato, M., Gimenes, I., et al.: Supporting QoS Negotiation with Feature Modeling. 
In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 
429–434. Springer, Heidelberg (2007) 

13. Robak, S., Franczyk, B.: Modeling Web Services Variability with Feature Diagrams. In: 
Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS, vol. 2593, 
pp. 120–128. Springer, Heidelberg (2003) 

14. Martin, D., Paolucci, M., et al.: Bringing Semantics to Web Services: The OWL-S Ap-
proach. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. 
Springer, Heidelberg (2005) 

15. Li., L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic Web 
Technology. In: 12th Int. World Wide Web Conference (WWW 2003), pp. 331–339 
(2003) 



232 J. Wang et al. 

16. Paolucci, M., Kawamura, T., et al.: Semantic Matching of Web Services Capabilities. In: 
Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Hei-
delberg (2002) 

17. Tan, Y., Vellanki, V., et al.: Service Domains. IBM Systems Journal 43(4), 734–755 
(2004) 

18. Benatallah, B., Sheng, Q., et al.: The Self-Serv Environment for Web Services Composi-
tion. IEEE Internet Computing 7(1), 40–48 (2003) 

19. McIlraith, S., Son, T., et al.: Semantic Web Services. IEEE Intelligent Systems 16(2), 46–53 
(2001) 

20. Luger, G.: Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 
5th edn. Pearson Addison Wesley, London (2004) 

21. Czarnecki, K., Helsen, S., et al.: Staged Configuration through Specialization and Multi-
Level Configuration of Feature Models. Software Process: Improvement and Practice 10(2), 
143–169 (2005) 

 



View-Based Reverse Engineering Approach for

Enhancing Model Interoperability and
Reusability in Process-Driven SOAs

Huy Tran, Uwe Zdun, and Schahram Dustdar

Distributed Systems Group, Information Systems Institute
Vienna University of Technology, Austria

{htran,zdun,dustdar}@infosys.tuwien.ac.at

Abstract. In many companies, process-driven SOAs are introduced us-
ing technical process languages, such as BPEL, to orchestrate services.
The process models developed using this approach are often too com-
plex and hard to reuse because all process-related concerns are tangled
in only one type of model. To make the models more understandable for
non-technical stakeholders, many companies additionally introduce high-
level process descriptions, e.g., specified in BPMN or EPCs, to offer a
non-technical view of the processes. This divergence of process languages
often leads to inconsistencies after a few evolution steps. We propose a
novel approach based on architectural views that not only offers models
tailored to the various stakeholders’ concerns but also provides an auto-
mated integration of models at different abstraction levels. In particular,
we propose an extensible reverse-engineering tool-chain to automatically
populate various view models with information from existing process
descriptions and generate executable code from these view models.

1 Introduction

In a process-driven, service-oriented architecture (SOA), business functionality is
accomplished by executing business processes invoking various services. A typical
business process includes a number of activities and a control flow. Each activity
corresponds to a communication task (e.g., it invokes other services or processes)
or a data processing task. The control flow describes how these activities are
orchestrated. A process is typically represented either in an executable language,
such as BPEL [7] or XPDL [24], or in a high-level modeling language such as
BPMN [15], EPC [10], or UML Activity Diagrams [14].

Nowadays, business process developers have to deal with increasing needs for
change, for instance, concerning business requirement changes or IT technol-
ogy changes. Therefore, the process models should enable a quicker reaction on
business changes in the IT by manipulating business process models instead of
code. Unfortunately, most of the existing business processes are developed and
maintained by technical experts (aka the IT experts) in low-level, executable
languages. It is difficult for the business analysts to get involved in process de-
velopment and maintenance because for these tasks an understanding of many

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 233–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



234 H. Tran, U. Zdun, and S. Dustdar

technical details is required. Hence, technical experts are required for many task
in managing, developing, and maintaining the process models. At the same time,
the process models become too complex and the various process concerns are
hard to reuse. In addition, there is a lack of adaptation of process models to suit
the needs of particular stakeholders, e.g. business analysts or technical experts.

As a solution to these problems, some companies introduce high-level process
descriptions, for instance, specified in BPMN or EPCs, to offer a non-technical
view of the processes. This practice leads to yet another problem, namely, the
divergence of process representations. That is, various more or less abstract
descriptions of each business process are created, which might quickly become
inconsistent as changes occur. As a consequence, neither the information in the
high-level models is reused for defining the technical models, nor vice versa.

The aforementioned challenges have not been resolved in the context of
process-driven SOAs yet. We present in this paper a novel view-based reverse en-
gineering approach for addressing these challenges. Our approach harnesses the
concept of architectural views and the partial interpreter pattern [25] to adapt
process models to suit the requirements of particular stakeholders. Using the par-
tial interpreter pattern, we devise a number of interpreters to extract more and
less abstract views from process descriptions. The relationships between these
views are maintained via our view-based modeling framework (VbMF) [20]. Us-
ing extension and view integration mechanisms, the views can be manipulated
to produce more appropriate representations according to the stakeholders’ re-
quirements, and code in executable languages can be (re-)generated. VbMF not
only supports the reuse of information in process models at different abstrac-
tion levels and in different process concerns, but also the reuse of information in
existing process models, e.g. written in BPEL.

In this paper, first we give a short introduction to VbMF in Section 2. Section 3
describes the view-based reverse engineering approach. In Section 4 we present
the details of using view-based interpreters to analyze existing business processes
and extract various architectural views from the processes. Finally, in Section 5
we discuss related work and conclude in Section 6.

2 The View-Based Modeling Framework

2.1 Overview of the View-Based Modeling Framework

The view-based modeling framework [20] is based on the concept of architectural
views. An architectural view is a representation of a system from the perspec-
tive of a related set of concerns [8]. Each particular concern is (semi-)formalized
by a respective meta-model. VbMF defines a number of meta-models (see
Figure 1(a)), one for each architectural view. A meta-model at a lower abstrac-
tion level is defined as an extension of the meta-models at higher levels. VbMF’s
meta-models are either directly or indirectly derived a Core meta-model (see
Figure 1(b)). The relationships between meta-models are used to bridge the gaps
between meta-models at different abstraction levels and to propagate changes.



View-Based Reverse Engineering Approach 235

Extension
View

Extension
View

Core
meta-model

Meta-
meta-model

Control Flow
View

meta-model

Collaboration
View

meta-model

Information
View

meta-model

Transaction
View

meta-model

M3

New-Concern
View

meta-model

M2

Extension
View

meta-model

Extension
View

Extension
View

Extension
ViewView

M1

M0
Extension

View
Extension

View
Executable

Code

Extension
View

Configuration
files

View-level operations:
- design (view)
- integrate
- generate (code)

Meta-level operations:
- design (meta-model)
- extend

Code-level operations:
- deploy
- code

(a) View-based model-driven framework

ExtensibleElement
NamedElement

-name : String

NameSpace

-uri : String

-prefix : String

View

-ID : String

ServiceProcess

consumer

*

required

*

provider

*

provided

*

element

*

view

*

(b) The core meta-model

Fig. 1. The VbMF modeling framework and the Core meta-model

Activity

Switch

-otherwise : Activity [0..1]

StructuredActivity

-link : Link [*]

Case

-condition : String

-activity : Activity [1]

View

(core)

ControlFlowView

Link

SimpleActivity

SequenceFlow

activity
1..*

activity

1

source 1

outgoing 1

target 1

incoming 1

cases1..*

(a) Control Flow Meta-model

PartnerLink

-name : String

-myRole : Role [0..1]

-partnerRole : Role [0..1]

CollaborationView

View

(core)

PartnerLinkType

Service

(core)

Interaction

OperationChannel

RoleInterface

Service

Message

interaction

*

message* role*

partnerLinkType

1
out

*

in

*

interaction *

partnerLink 1

interface

1

message1

channel* operation*

role 1..*

partnerLinkType*

service *

interface 1..*

service *

(b) Collaboration View Meta-model

ComplexBusinessObjectSimpleBusinessObject

BusinessObjectPool

ObjectReference

ObjectType

BusinessObject

DataHandling

Transformation

Element

(core)

Types

object *

pool

object

1reference

*target

1

source

1

type 1

transformation1..*

owner

types

*

element1..*

owner

(c) Information View Meta-model

Receive

-createInstance : Boolean

PropertyAlias

-messageType : String

-part : String

-query : String

AbstractInteraction
CorrelationSet

-properties : Property

BPELCollaboration
View

CollaborationView

(collaboration)

Correlation

-isInitiate : Boolean

CorrelationSets

Interaction

(collaboration)

Interface

(collaboration)

Property

-type : String

Variable

ReplyInvoke

variable

0..1

correlationSets0..1

correlationSet

1..*
correlation

*

propertyAlias
*

variable

*

correlation

0..1

variable

0..1

property

1

interface

1

in
0..1

out
0..1

property

*

correlationSet1..*

(d) BPEL extension of the Collaboration View

Fig. 2. Three basic concern meta-models and a BPEL extension meta-model example



236 H. Tran, U. Zdun, and S. Dustdar

Example meta-models that we have derived from the Core meta-model are:
Control Flow, Collaboration and Information View (see Figures 2(a), 2(b) and
2(c)). For particular technologies, e.g. BPEL/WSDL, the extension mechanisms
can be used to enrich the abstract meta-models with the specifics of those tech-
nologies. To illustrate the extension mechanisms, we present a BPEL-specific
collaboration view meta-model in Figure 2(d), which is defined by extending
the elements from Figures 1(b) and 2(b). We use the distinction of the Core
meta-model, generic view meta-models, and extension meta-models to represent
different abstraction levels, such as business level and technical level.

In our implementation of these concepts, we exploit the model-driven soft-
ware development (MDSD) paradigm [22] to separate the platform-neutral views
from the platform-specific views. Code can be generated from the views by
using model-to-code transformations. We have realized VbMF in openArchitec-
tureWare (oAW) [16], a model-driven software development tool, and all meta-
models are defined using the Eclipse Modeling Framework [5]. To demonstrate
our approach, we have exemplified it using BPEL and WSDL, which are likely
the most popular process/service modeling descriptions used by numerous com-
panies today. Nevertheless, in general, the same approach can be taken for any
other process-driven SOA technologies by defining respective meta-models.

2.2 View-Based Reverse Engineering Tool-Chain

VbMF mainly consists of a forward engineering tool-chain (see Figure 3) in which
the stakeholders can develop process-driven view models, can generate process
code from these views, or can extend the modeling framework with other process
concerns by adding new meta-models or by enhancing existing meta-models.

Forward Engineering 
Tool-chain

View
Development

Transform

Integrate

Design

Reverse Engineering
Tool-chain

Interpreters

Process description
(BPEL,WSDL,etc.)

Meta-level
Development

Extend

Framework
Meta-models

Architectural
View

Repository

Executable
Code

defines

Fig. 3. The extended VbMF including the view-based reverse-engineering



View-Based Reverse Engineering Approach 237

Companies today have built up a vast amount of legacy process representa-
tions, either high-level or low-level, but there is no proper integration of these
process descriptions, and no appropriate adaptation of process models to the
stakeholders’ needs and focus. Typically off-the-shelf process modeling tools,
such as BPEL or BPMN tools, are used, and hence it is required to integrate them
into VbMF. For these reasons, we extended VbMF with a reverse-engineering
tool-chain for adapting process models and integrating various modeling rep-
resentations. The outcome are tailored views that can be put into a common
repository, and then be re-used in other processes or manipulated to re-generate
new executable code, which corresponds to changes in the corresponding views
(see Figure 3).

3 View-Based Reverse Engineering Approach

In the context of process-driven SOAs, many existing systems have built up an
enormous repository of existing process code in executable languages, such as
BPEL and WSDL. There are two important issues that have not been solved
yet. Firstly, such process code integrates many tangled concerns such as message
exchanges, data processing, service invocations, fault handling, transactions, and
so forth. Secondly, these languages are rather technology-specific and therefore
the abstract representations are not explicitly available at the code level. As a
result, the process models become too complex for stakeholders to understand
and maintain, to integrate, to cooperate with other processes, or to re-use process
models from existing modeling tools.

Our view-based approach can potentially resolve these issues. However, for
budgetary reasons, developing the view models, required in our approach, from
scratch is a costly option. The alternative is an (automated) re-engineering
approach comprising two activities: reverse-engineering for building more appro-
priate and relevant representations of the legacy code; forward-engineering for
manipulating the process models and for re-generating certain parts of the process
code. During the reverse engineering process, high-level, abstract and low-level,
technology-specific views on the process models are recovered from the existing
code. This way, the reverse engineering approach helps stakeholders to get in-
volved in process re-development and maintenance at different abstraction levels.
Reverse engineering of business processes should not only help to adapt process
models to stakeholder needs but also offer the ability to integrate various process
models to enhance the interoperability of process models. The view-based reverse
engineering approach we propose in this paper aims at achieving these goals.

3.1 The Reverse Engineering Tool-Chain

The reverse engineering tool-chain (see Figure 4) consists of a number of view-
based interpreters, such as control flow interpreter, collaboration view inter-
preter, and so forth. Each interpreter is used for interpreting and extracting
the corresponding view from the process descriptions. An interpreter of a cer-
tain view must be defined based on the meta-model which that view conforms



238 H. Tran, U. Zdun, and S. Dustdar

Framework
meta-models

High-level
Views

View-based
intepreters

Low-level
Views

Process descriptions
(BPEL,WSDL,etc.)

High-level
Languages

Low-level
Languages

described
in

defines

"virtual"
integration of
high-level and

low-level
representations

in various
languages

"virtually"
refines

interpretes

produces

produces

conforms

conforms

corresponds to

corresponds to

described in

refines
into

Fig. 4. The view-based reverse engineering tool-chain

to. For instance, the control flow view consists of elements such as Activity,
Flow, Sequence, Switch, Case according to the control flow view meta-model (see
Figure 2(a)). In order to extract the control flow view from process descriptions,
the interpreter walks through the input descriptions to pick the above-mentioned
elements. Other elements are ignored.

3.2 General Approach for View Extraction

The process descriptions comprise the specification of business functionality in
a modeling language, for instance, as we exemplify in this paper, BPEL [7].
Moreover, the process functionality also exposes service interfaces, for instance,
expressed in WSDL [23]. To demonstrate the extraction of appropriate views
from process descriptions, we developed a number of interpreters such as con-
trol flow interpreter, collaboration view interpreter, as well as a BPEL-specific
extension view interpreter.

Our general approach to define view interpreters is based on the Partial In-
terpreter pattern [25]. This pattern is typically applied when the relevant infor-
mation to be interpreted from a language is only a (small) sub-set of the source
document’s language, and thus, the complexity of the whole language should be
avoided in the subsequent interpretation. The approach based on Partial Inter-
preter enables us to define modular, pluggable interpreters, and the framework
to be easily extensible with new views and view extraction interpreters. The
solution is to provide a Partial Interpreter for view extraction, which only un-
derstands the specific language elements required for one view. There is a generic
parser that is responsible for parsing the process descriptions. The parsing events
generated by this generic parser are interpreted by the Partial Interpreters, which
only interprets the language elements relevant for a particular view.

The Partial Interpreter’s mapping specification and view-specific interpre-
tation specification are both defined generically on basis of the meta-models.
Hence, they can be reused for many concrete view models. In the subsequent
sections, we present the details of the realization of the mapping specifications for
basic process concerns, i.e., control flow interpreter, information view interpreter



View-Based Reverse Engineering Approach 239

and collaboration view interpreter to illustrate our general approach. Other view
interpreters can be implemented following the same approach.

4 Details of the View-Based Reverse Engineering
Approach: Three Empirical Analyses

In this section, we empirically analyze the capabilities of the view-based reverse
engineering approach, such as the adaptation of process models to stakeholders’
needs and the integration of models at different levels of abstraction, by investi-
gating three typical cases in which the view-based reverse engineering approach
can get applied. In doing so, we also introduce the details of our approach for
applying it to BPEL/WSDL as an exemplary process-driven SOA technology.

These empirical analyses have been carried out on an industrial case study,
namely, customer care, billing and provisioning systems of an Austrian Internet
Service Provider (see [6] for more details). In the following, we use the Billing
Renewal process as an example. The billing platform includes a wide variety of
services provided by various partners such as financial services, domain services,
physical hosting services, retail/wholesale services, and so on. These services are
exposed in WSDL interfaces and integrated by using BPEL processes.

4.1 Extracting Relevant Views

The basic analysis, we performed, was to deal with the extraction of the con-
trol flow view from BPEL code. The control flow interpreter walks through the
process description in BPEL and collects necessary information of atomic and
structured activities. Then, it creates the elements in the Control Flow View and
assigns their attributes with relevant values as specified by the Control Flow
View meta-model (see Figure 2(a)). We demonstrate the mapping of Billing
Renewal specification in BPEL onto the Control Flow View in Figure 5.

4.2 Extracting Views at Different Abstraction Levels

To illustrate the ability of adapting views at different levels of abstraction, we de-
vise two interpreters to extract the Collaboration View and the BPEL-specific
extension of the Collaboration view. These interpreters are realized using the
same approach as used for the control flow interpreter. However, these views
comprise not only elements from the BPEL descriptions but also elements of
the process interfaces specified in WSDL files. That is, the interpreters firstly
collect information from WSDL descriptions, then walk through the BPEL spec-
ifications to the extract relevant elements, and finally create relevant elements
on the views according to the Collaboration View meta-model in Figure 2(b).
Figures 5 and 6 illustrate the extraction of the Collaboration View from BPEL
descriptions of the Billing Renewal process.

The Collaboration View is a high-level representation compared to the BPEL
extension of the Collaboration View, which is at a lower level of abstraction.



240 H. Tran, U. Zdun, and S. Dustdar

<process name="BillingRenewal">
  <partnerLinks>
    <partnerLink name="CRMPartnerPL"
      partnerLinkType="CRMPartnerPLT" partnerRole="CRMPartner"/>
    <partnerLink name="PostalPartnerPL"
      partnerLinkType="PostalPartnerPLT" partnerRole="PostalPartner"/>
    <partnerLink myRole="BillingRenewal" name="BillingRenewalPL"/>
    <partnerLink name="BankingPartnerPL"
      partnerLinkType="BankingPartnerPLT" partnerRole="BankingPartner"/>
  </partnerLinks>
  <variables>
    <variable messageType="ProfileRequest" name="profile_request"/>
    <variable messageType="ProfileResponse" name="profile_response"/>
    <variable messageType="billingservice:RenewBillingRequest" name="renew_request"/>
  </variables>
  <sequence>
    <receive createInstance="true" name="RequestBillingRenewal"
      operation="renewBilling" partnerLink="BillingRenewalPL"
      portType="BillingRenewal" variable="renew_request"/>
    <invoke inputVariable="profile_request" name="GetCustomerProfile"
      operation="retrieveProfile" outputVariable="profile_response"
      partnerLink="CRMPartnerPL" portType="CustomerManagement"/>
    <invoke inputVariable="invoicesend_request" name="SendFistInvoice"
      operation="sendPostal" outputVariable="invoicesend_response"
      partnerLink="PostalPartnerPL" portType="PostalDeliver"/>
    <switch>
      <case condition="customer_paid=true">
        <sequence>
          <invoke inputVariable="extend_request" name="ExtendDomain"
            operation="extendDomain" outputVariable="extend_response"
            partnerLink="DomainPartnerPL" portType="DomainManagement"/>
          <invoke inputVariable="confirmation_request"
            name="SendConfirmationLetter" operation="sendPostal"
            outputVariable="confirmation_response"
            partnerLink="PostalPartnerPL" portType="postalDeliver"/>
        </sequence>
      </case>
    </switch>
  </sequence>
</process>

Fig. 5. Mapping the Billing Renewal process (left-hand side) onto the VbMF’s views
including the Collaboration View (top-right) and the Control Flow View (bottom-right)

Therefore, the BPEL extension view consists of additional elements and some
of these elements have extra properties compared to those of the Collaboration
View. This way, other process-driven modeling languages, either high-level or
low-level, can be handled and integrated by using the view-based reverse engi-
neering tool-chain and VbMF.

4.3 Enhancing the Adaptability of the Process Models

The adaptability of process models to the requirements of a certain stakeholder
can be enhanced using two methods developed in VbMF: extension mechanisms
and view integration. View extension mechanisms [20] allow us to enrich existing
meta-models with additional elements and/or extra attributes for the existing
elements of the original meta-models. This way, the abstract views can be grad-
ually refined into less abstract views by increasing their granularity with added
technology-specific features until the resulting views are well suited for a partic-
ular stakeholder’s needs. Next, we define respective interpreters for these views
and use the interpreters to extract the corresponding views from the existing
process code. An example of view extension is the BPEL-specific extension of
the Collaboration View shown in the previous analysis.

View integration [20] is another method to produce new richer views by merg-
ing existing views. For instance, in [20], we have developed a simple name-based



View-Based Reverse Engineering Approach 241

<definitions>
  <types>
  <portType name="BillingRenewal">
    <operation name="renewBilling">
      <input message="RenewBillingRequest" />
      <output message="RenewBillingResponse" />
    </operation>
  </portType>
  <partnerLinkType name="CRMPartnerPLT">
    <role name="CRMPartner">
      <portType name="crm:CustomerManagement"/>
    </role>
  </partnerLinkType>
  <partnerLinkType name="PostalPartnerPLT">
    <role name="PostalPartner">
      <portType name="PostalDeliver"/>
    </role>
  </partnerLinkType>
  <partnerLinkType name="BillingRenewalPLT">
    <role name="BillingRenewal">
      <portType name="BillingRenewal"/>
    </role>
  </partnerLinkType>
  <partnerLinkType name="BankingPartnerPLT">
    <role name="BankingPartner">
      <portType name="CreditCardManagement"/>
    </role>
  </partnerLinkType>
</definitions>

Fig. 6. Mapping the Billing Renewal process (left-hand side) onto the Collaboration
View (right-hand side)

matching algorithm and presented an example of integrating the control flow
view and the collaboration view. The matching algorithm searches the input
views for integration points, which are, in this case, the conformable elements
with the same name. Afterward, the two views are merged together at these
integration points. The resulting view inherits the control flow that defines the
execution order of activities. In addition, the activities in the resulting view that
are responsible for invoking services inherit a number of additional attributes
from the corresponding activities defined in the collaboration view.

5 Related Work

Our work presented in this paper is a reverse engineering approach [3] based
on the concept of architectural views [8]. The whole VbMF tool-chain provides
support for reengineering [17] as well. That is, in addition to the reverse engineer-
ing parts of the tool chain, means for re-structuring, modification, and forward
engineering are provided to yield new system structures and functionality.

In the context of reverse engineering, view-based approaches are an emerg-
ing area of interest. For instance, the approaches reported in [2, 4, 19] focus on
inter-organizational processes (in term of cross-organizational workflows) and
use views to separate the abstract process representations (aka public processes)
from the internal processes (aka private processes). Bobrik et al. [1] present an
approach to process visualization using personalized views and a number of oper-
ations to customize the views. Zou et al. [27] propose an approach for extracting
business logic, also in terms of workflows, from existing e-commerce applica-
tions. All these approaches aim at providing perspectives on business processes



242 H. Tran, U. Zdun, and S. Dustdar

at a high level of abstraction and maintaining the relationships among different
abstraction levels to quickly re-act to changes in business requirements. These
approaches have in common that only the control flow of process activities (aka
the workflows) is considered. Other process concerns, such as service/process
interaction, data processing, etc. have only been partially exploited or not tar-
geted. In addition, these approaches do not support enhancing process views or
propagating changes as supported in our approach, for instance, through view
integration, view extension and code generation.

Kazman et al. [9] describe the Dali workbench, an approach for understand-
ing and analysis the system architecture. The extraction process begins with
extracting views from source code using lexical analyzers, parsers or profilers.
Next, the relationships among views are established by view fusion to improve
the quality and the correctness of views. However, because of the complexity of
typical process models, this approach is hardly applicable to capture the whole
process description in a unique view.

In the context of process-driven modeling, there are a number of standard lan-
guages in which some provide high-level descriptions, for instance, BPMN [15],
EPC [21, 10] and Abstract BPEL in WS-BPEL 2.0 [13]. There is no explicit
link between these languages and the executable languages. This has led to a
number of recent research approaches. For instance, Mendling et al. [12] dis-
cuss the transformation of BPEL to EPCs. Ziemann et al. [26] present an ap-
proach to model BPEL processes using EPC-based models. Recker et al. [18]
translate between BPMN and BPEL. Mendling et al. [11] report on efforts in
X-to-BPEL and BPEL-to-Y transformations. These transformation-based ap-
proaches mostly focus on one concern of the process models, namely, the control
flow, which describes the execution order of process activities. They offer no
support for extension of process models or integrating other concerns of process
models, such as service interactions, data processing, transaction handling, etc.
Hence, during the transformation from process code to abstract representations,
necessary information required to re-generate executable code gets lost.

WS-BPEL 2.0, the newly revised standard, provides the concept of an Ab-
stract BPEL process, which is represented by the same structures as an Exe-
cutable BPEL process. Developers can explicitly hide some syntactic constructs
in an Abstract BPEL process using predefined opaque tokens as explicit place-
holders for the omitted details. An abstract process is often associated with
a profile which specifies the semantics of the opaque tokens. Hence, one could
use an approach akin to our approach where the high-level view is the abstract
process profile, and low-level representations are respective profiles. Then our
reverse engineering tool-chain could be used to extract the relevant views.

All the above-mentioned approaches and standards have difficulties in han-
dling the complexity of process models: Because the business process integrates
numerous concerns, the complexity of process model increases as the number
of process elements, such as message exchanges, service invocations, data pro-
cessing tasks, etc. grows. Hence, these approaches are less efficient than our



View-Based Reverse Engineering Approach 243

approach in dealing with pretty huge existing process repositories, developed in
other languages or dialects, or integrating arbitrary process modeling tools.

6 Conclusion

The view-based reverse engineering approach, presented in this paper, can help
the various stakeholders of a process-driven SOA to overcome two important
issues. Firstly, it exploits the concept of architectural view to deal with the com-
plexity of existing process repositories and to adapt the process representations
to the stakeholders’ needs and focus. Secondly, it provides the ability of integrat-
ing diverse process models and offers explicit relationships for understanding and
maintaining process models and for propagating changes. Hence, process models
at different abstraction levels and different process concerns can be reused to
populate the other. This has been achieved by developing a novel concept for
a reverse engineering tool chain, based on partial interpreters and view models,
and by seamlessly integrating this reverse engineering tool chain into our view-
based modeling framework, which also supports means for forward engineering,
such as view integration, view extension and code generation. The reverse en-
gineering tool chain enables the reuse of existing process code, e.g. written in
BPEL/WSDL, in the view-based modeling framework.

References

1. Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

2. Chebbi, I., Dustdar, S., Tata, S.: The view-based approach to dynamic inter-
organizational workflow cooperation. Data Knowl. Eng. 56(2), 139–173 (2006)

3. Chikofsky, E.J., Cross, J.H.I.: Reverse engineering and design recovery: A taxon-
omy. IEEE Software 7(1), 13–17 (1990)

4. Chiu, D.K.W., Cheung, S.C., Till, S., Karlapalem, K., Li, Q., Kafeza, E.: Workflow
view driven cross-organizational interoperability in a web service environment. Inf.
Tech. and Management 5(3-4), 221–250 (2004)

5. Eclipse. Eclipse Modeling Framework (2006), http://www.eclipse.org/emf/
6. Evenson, M., Schreder, B.: D4.1 Use Case Definition and Functional Requirements

Analysis. SemBiz Deliverable (August 2007)

7. IBM, B. Systems, Microsoft, SAP AG, and Siebel Systems. Business process exe-
cution language for web services (May 2003),
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.eps

8. IEEE. Recommended Practice for Architectural Description of Software Intensive
Systems. Technical Report IEEE-std-1471-2000, IEEE (2000)

9. Kazman, R., Carriere, S.J.: View Extraction and View Fusion in Architectural
Understanding. In: ICSR 1998. Proc. of the 5th Int. Conference on Software Reuse,
Washington, DC, USA, p. 290. IEEE Computer Society, Los Alamitos (1998)

10. Kindler, E.: On the semantics of EPCs: A framework for resolving the vicious circle.
In: Business Process Management, pp. 82–97 (2004)

http://www.eclipse.org/emf/
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.eps


244 H. Tran, U. Zdun, and S. Dustdar

11. Mendling, J., Lassen, K.B., Zdun, U.: Transformation strategies between block-
oriented and graph-oriented process modelling languages. Technical Report JM-
200510 -10, WU Vienna (2005)

12. Mendling, J., Ziemann, J.: Transformation of BPEL processes to EPCs. In: Proc.
of the 4th GI Workshop on Event-Driven Process Chains (EPK 2005), December
2005, vol. 167, pp. 41–53 (2005)

13. OASIS. Business Process Execution Language (WSBPEL) 2.0 (May 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.eps

14. OMG. Unified Modelling Language 2.0 (UML) (2004), http://www.uml.org
15. OMG. Business Process Modeling Notation (February 2006),

http://www.bpmn.org/Documents/OMG-02-01.eps

16. openArchitectureWare.org (August 2002),
http://www.openarchitectureware.org

17. Antonini, P., Canfora, G., Cimitile, A.: Reengineering legacy systems to meet qual-
ity requirements: An experience report. In: ICSM 1994. Proceedings of the Interna-
tional Conference on Software Maintenance, Washington, DC, USA, pp. 146–153.
IEEE Computer Society, Los Alamitos (1994)

18. Recker, J., Mendling, J.: On the translation between BPMN and BPEL: Conceptual
mismatch between process modeling languages. In: Eleventh Int. Workshop on
Exploring Modeling Methods in Systems Analysis and Design (EMMSAD 2006),
June 2006, pp. 521–532 (2006)

19. Schulz, K.A., Orlowska, M.E.: Facilitating cross-organisational workflows with a
workflow view approach. Data Knowl. Eng. 51(1), 109–147 (2004)

20. Tran, H., Zdun, U., Dustdar, S.: View-based and Model-driven Approach for Re-
ducing the Development Complexity in Process-Driven SOA. In: Intl. Working
Conf. on Business Process and Services Computing (BPSC 2007), September 2007.
Lecture Notes in Informatics, vol. 116, pp. 105–124. Springer, Heidelberg (2007)

21. van der Aalst, W.: On the verification of interorganizational workflows. Computing
Science Reports 97/16, Eindhoven University of Technology (1997)

22. Völter, M., Stahl, T.: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley, Chichester (2006)

23. W3C. Web Services Description Language 1.1 (March 2001)
24. WfMC. XML Process Definition Language (XPDL) (April 2005),

http://www.wfmc.org/standards/XPDL.htm

25. Zdun, U.: Patterns of tracing software structures and dependencies. In: Proc. of
8th European Conference on Pattern Languages of Programs (EuroPLoP 2003),
Irsee, Germany, June 2003, pp. 581–616 (2003)

26. Ziemann, J., Mendling, J.: EPC-based modelling of BPEL processes: a pragmatic
transformation approach. In: Proc. of the 7th Int. Conference Modern Information
Technology in the Innovation Processes of the Industrial Enterprises (MITIP 2005)
(2005)

27. Zou, Y., Hung, M.: An approach for extracting workflows from e-commerce applica-
tions. In: ICPC 2006. Proc. of the 14th IEEE Int. Conf. on Program Comprehension
(ICPC 2006), Washington, DC, USA, pp. 127–136. IEEE Computer Society, Los
Alamitos (2006)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.eps
http://www.uml.org
http://www.bpmn.org/Documents/OMG-02-01.eps
http://www.openarchitectureware.org
http://www.wfmc.org/standards/XPDL.htm


H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 245–256, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Lightweight Approach to Partially Reuse Existing 
Component-Based System in Service-Oriented 

Environment 

He Yuan Huang, Hua Fang Tan, Jun Zhu, and Wei Zhao 

IBM China Research Laboratory, Building 19 Zhongguancun Software Park, 
8 Dongbeiwang WestRoad, Haidian District, 100094 Beijing, China 
{huanghey,tanhuaf,zhujun,weizhao}@cn.ibm.com 

Abstract. A fundamental derailment factor for reusing today's business applica-
tions is the tight coupling among program components. While SOA advocates an 
architecture with loose coupling among components, the invocation dependencies 
among components are still tangled with implementation code traditionally. SCA 
(Service Component Architecture) - an emerging service-oriented component 
model - uses a standard and declarative way to handle inter-component dependen-
cies. Thus, SCA components have better reusability from this perspective. This 
paper proposes a lightweight approach to partially reuse existing components by 
wrapping them as SCA components. Several challenges are identified and ad-
dressed in this paper, especially the one of externalizing component dependencies 
without changing source code. The proposed approach addresses the challenges 
systematically, with a supporting system implemented. Moreover, an example 
scenario is given to better illustrate the usage of the approach. Finally, some future 
directions of the work are pointed out. 

Keywords: Software reuse, component-based system, service-oriented archi-
tecture, service-oriented environment. 

1   Introduction 

A fundamental derailment factor for reusing today's business applications is the tight 
coupling among program components. Service-oriented architecture (SOA) is an 
evolution of application architectural style in which an application's business logic or 
individual functions are modularized and presented as loosely-coupled components - 
services. The service interface is independent of the implementation so that application 
developers or system integrators can build applications by composing one or more 
services without knowing the services' underlying implementations. The need for 
flexible service composition, in turn, requires that inter-component dependencies 
should not be hard-coded as invocation at the code level. 

SCA (Service Component Architecture) [20] - an emerging service-oriented compo-
nent model – has been jointly created and advocated by major Java EE vendors including 
IBM, Oracle & BEA, with the objective of enabling a standard and declarative way of 



246 H.Y. Huang et al. 

handling inter-component dependencies. SCA introduces service-oriented concepts into 
a component model and execution environment. The SCA Assembly Model consists of a 
series of artifacts which define the configuration of an SCA system in terms of service 
components which implement and/or use services and the connections (wires) and related 
artifacts that describe how they are linked together. Moreover, SCA aims to encompass a 
wide range of technologies for service components and for the access methods which are 
used to connect them. That's why many believe SCA will become the base for building 
agile business applications in the future. 

Today's reality, however, lies in that a huge number of existing business applications 
are already written in prevailing component-based programming models like EJB, 
CORBA, and etc. If we cannot effectively & efficiently reuse these component appli-
cations and turn them into composable SCA components, the benefits of SCA will only 
be realized in the newly built applications, and get discounted considerably. The 
challenges here can be summarized as follows:  

♦ Typically, the anticipated reuse granularity is not at the whole system level for 
various efficiency considerations. We need to selectively extract those needed 
components and externalize their linkage to other components.  

♦ The runtime platform of the existing component-based system is usually different 
or incompatible with the target SCA platform; platform migration is usually not 
possible. 

♦ The externalization of those inter-component dependencies typically requires 
knowledge and access to the original source code, while in most cases, only the 
access to the executable package (e.g., .ear file for EJB) is available. 

While there are some existing approaches to address the first two challenges, there 
still lacks of approach to externalize component dependencies without changing 
source code. 

In this paper, we propose a systematic way to address the above challenges. A set of 
component proxies called legacy surrogates are automatically generated, from the 
component architecture extracted from the executable package, as code following the 
original programming model (e.g., EJB). Note that legacy surrogates for depended 
components are introduced to replace the depended components and delegate the in-
vocations to SCA components to be assembled. Another Surrogate, called target sur-
rogate will also be automatically generated, following the programming model of the 
target platform, as representation of the to-be-reused fragments in the new SCA envi-
ronment. The legacy and target surrogates are designed to be seamlessly integrated so 
that they can communicate with each other at runtime. Centered around surrogate, we 
develop an approach to reuse existing component based system in construction service 
oriented applications in a non-intrusive way.  

The rest of this paper is organized as following. In section II, we will present a brief 
literature study on the existing ways of reusing existing applications for SOA. After-
wards, our overall methodology and architecture will be presented, followed by a de-
tailed explanation of the technical components with an example scenario of reusing 
components in an EJB based legacy application. We conclude the paper and give out-
look for future research directions in the last section. 



 A Lightweight Approach to Partially Reuse Existing Component-Based System 247 

2   Related Work 

2.1   Methods and Tools for Legacy System Integration 

The main intention of this approach is to reuse a portion of an existing compo-
nent-based system into Service-Oriented applications. Adapting existing legacy sys-
tems to be integrated with new technologies and platforms is therefore closely related to 
our approach. The normal way to integrate existing systems in the new application 
using new technologies is by adding a wrapper or proxy between them. Kulkarni and 
Reddy’s invention [17] wraps the whole Objected-Oriented application as an object 
facade which will communicate with new components in opposite integrated compo-
nent-based application through a connectivity bus which can be any standard mid-
dleware. Methods in [16] and [19] add a light weight proxy between the legacy system 
and the applications with advanced technologies. The proxy plays a mediation role 
between the different protocols which do not force any one counterpart to comply with 
the other. These methods based on interface wrappers and proxies all intend to reuse the 
existing systems’ certain functionality completely. Our method, however, reuses the 
components in the existing systems in a partial manner. That is to say, our method 
reuses the necessary implemented logics of an existing component and meantime 
leaves its referred components as placeholders which could be replaced with any other 
possible components, instead of merely the ones in currently processed system. This is 
actually a distinguished merit in nature of service component architecture which we are 
pursuing while reusing the existing systems. 

2.2   Methods and Tools for Legacy System Migration 

In order to acquire the advanced features brought by new technologies, porting legacy 
systems to new platforms (e.g. from Windows operating system to Linux operating 
system; from standalone Web server to J2EE application server) or with advanced 
technologies (e.g. from procedural paradigm to objected-oriented paradigm) is always 
both a strong desire and a great concern for users of legacy systems. Although this is 
not a typical reuse scenario, the nature to process existing systems drives a lot of 
technologies related to reuse. Understanding and transforming the original legacy 
system and redeploying the newly porting system are not only time-consuming but also 
error-prone. This is mainly because the software engineers who perform the porting 
work are not the original developers. To facilitate the transformation of a legacy sys-
tem, analyzing and discovering its corresponding high level design to guide the source 
code transformation has been devoted large numbers of efforts in the literature and 
practiced much in the real world. 

There are two main categories of approaches and corresponding automated systems 
to address this problem. The first kind of approaches focus on source code and docu-
mentation itself and employ static analysis technologies to abstract the high level de-
signs of the target systems (see e.g. [1] [2] [3] [5] [6] [7] [8] [9] [10] [11]and [14]). A 
related invention proposed by Purewal [15] presents the systems and methods to gen-
erate open reusable, business components for Service-Oriented Architecture from 
existing client/server applications through decomposing them into separate user inter-
face, business logic and event management layers. The different layers are wrapped as 



248 H.Y. Huang et al. 

services and re-assembled to the open-standard based application. The key steps in 
these methods are analyzing the source code, mining the components and transforming 
the original source code to component programs. 

The other stream of methods to acquire designs of legacy systems are a variety of 
methods for profiling, testing, and observing systems’ behaviors, including actual 
execution and inspecting execution traces (see e.g. [4] [12] and [13]). Although this 
kind of methods and the corresponding tools improve the efficiency of the legacy 
transformation, intensive manual work on source code transformation are not easily 
avoided. 

These work focus on reengineering the legacy systems to the architecture of tech-
nically advanced paradigm and automated or semi-automated transforming the legacy 
source code. Our method focuses on existing systems implemented with the component 
technology. The target is to reuse these systems to a Service-Oriented Architecture (i.e. 
Service Component Architecture) with specifically targeted components. As a result, 
the differences of our method from the current migration approaches lie in three as-
pects. Firstly, we do not concern the componentization step and we leave the flexibility 
for end users to choose any possible candidate components to provide a service. This 
also means we do not focus on reusing the whole existing system rather a designate set 
of components. Besides, externalizing referred components is the differentiated point 
of our method. That is to say, if the reused component has referenced components, we 
will break this fixed linkage through adding the shallow components for those refer-
enced one. In the shallow components, newly added contents decide which components 
will be referenced finally. This way we make the referenced components not only 
provided locally by current system but also other possible ways. This is not addressed 
explicitly in the current literature. Thirdly, our method does not involve any analysis 
and modification of original source code of existing systems. 

3   Approach and Architecture 

3.1   Overall Approach 

To overcome the limitations of existing approaches, this paper proposes an approach 
and apparatus to SCAlize (make component SCA compatible) selected component(s) 
in component-based system without modifying components implementation. The basic 
idea is to replace depended components with legacy surrogates and delegate the in-
vocations on these legacy surrogates to the references of the target surrogate (SCA 
surrogate) of the component(s) to be reused. Fig. 1 shows the steps of the approach. 

Firstly, people need to identify the component(s) to be reused in the existing com-
ponent-based system. There are two typical reasons to select the component(s) to be 
reused. The first one is to see whether the component(s) is/are required in the ongoing 
development of a SOA system. The second one is to see how often the component(s) 
might be reused in future. An important result of this step is the names and interface(s) 
of the component(s) to be reused. There are lots of ways to get the interfaces of the 
component(s) in a component-based system. For example, people could directly get the 
interface of an EJB and get the definition of the interface with reflection mechanism. 



 A Lightweight Approach to Partially Reuse Existing Component-Based System 249 

1. Identify the component(s) to 

be reused 

2. Analyze the dependencies 

on other components 

3. Identify the depended 

components 

4.2 Generate target surrogate 

for component(s) to be reused 

4.1 Generate legacy surrogates 

for depended components 

5. Package SCAlized reusable 

component(s) 

6. Reuse SCAlized reusable 

component(s)  

Fig. 1. Approach to Partially Reuse Existing Component-Based System in Service-Oriented 
Environment 

Secondly, people need to analyze the dependencies between identified component(s) 
and other components in the existing component-based system. There are quite a lot 
approaches to identify the dependencies at component level, such as  analyzing the 
execution trace. 

Thirdly, based on the result of dependency analysis, depended components are 
identified. Their names and interfaces could be obtained just as the ways to get names 
and interfaces of component(s) to be reused. 

Fourthly, as the component(s) to be reused, depended components, and their dependen-
cies are identified, people could start to SCAlize the component(s) to be reused. There are 
two paralleled sub steps: generating legacy surrogates for depended components, and gen-
erating target surrogate (SCA surrogate) for the component(s) to be reused. 



250 H.Y. Huang et al. 

♦ The legacy surrogates could be generated with the same names and interfaces 
in terms of the interfaces of those depended components. The legacy surrogates 
will delegate invocations on their interfaces to the target surrogate (SCA sur-
rogate). In this way, the component(s) to be reused could work correctly 
without changing its/their implementation(s) by replacing depended compo-
nents with legacy surrogates of depended components. 

♦ The target surrogate (SCA surrogate), which provides services with same func-
tions as component(s) to be reused, could be generated in terms of the inter-
face(s) of component(s) to be reused. This SCA surrogate is actually a proxy to 
delegate invocations on its services to the component(s) to be reused. Mean-
while, the SCA surrogate has some pending references for functions of depended 
components. The references will be associated with other SCA components, 
which really provide the same functions of depended components. 

Fifthly, after getting all aforementioned surrogates, people could package SCAlized 
component(s) for further reuse. This step is relatively easy. Typically, the compo-
nent(s) to be reused and the legacy surrogates of depended components will be pack-
aged together, while the SCA surrogate will be packaged alone. 

Finally, people could reuse the packaged SCAlized component. In terms of the 
provided functions and required functions of the SCA surrogate, people could assemble 
it with other SCA components easily and deployed to the target SOA environment. In 
the meanwhile, the legacy part will be deployed into a runtime which supports the 
original component model. 

 

SCA Container

B’

CC

Legacy Container

AA

BBB

A’

Legacy 
Surrogate

EJB 
Component

SCA 
Component

Web Service 
Interface

Web Service 
Invocation Point

Legacy 
Invocation Point

Legend
SCA Service

SCA ReferenceLegacy Interface

 

Fig. 2. Abstraction of Resulting Deployment Diagram of our Approach 

Fig. 2 shows an abstraction of resulting deployment diagram, where legacy com-
ponent A is the component to be reused, and legacy component B is the depended 
component of legacy component A. SCA component C depends on SCA surrogate A’, 
which in turn depends on SCA component B’. 



 A Lightweight Approach to Partially Reuse Existing Component-Based System 251 

3.2   System Architecture 

To enable aforementioned approach, this paper also proposed a surpporting system. As 
shown in Fig. 3, most of the steps in the approach are addressed in this system. 

 

Scenario 
Execution Engine

Interaction Tracer

Traditional Component-Based 
System

Dependency 
Analyzer

Legacy Surrogate 
Generator

Target Surrogate 
Generator

Packager

Legacy 
Surrogate

SCA 
Surrogate

D

A
C

B

Component 
Registry

Design 
Document

Scenarios

Interaction 
Data

Dependency 
Graph

Component 
Interfaces

Package of 
SCAlized

Component(s)

Option 2

Option 1

Option 1 and Option 2 
are alternatives

SCAlization
Requirement Collector

To Be SCAlized
Component(s)

Legacy 
Surrogate

Step 1

Step 5

Step 4.1

Step 4.2

Step 2, 3

Scenario 
Execution Engine

Interaction Tracer

Traditional Component-Based 
System

Dependency 
Analyzer

Legacy Surrogate 
Generator

Target Surrogate 
Generator

Packager

Legacy 
Surrogate

Legacy 
Surrogate

SCA 
Surrogate

SCA 
Surrogate

D

A
C

B
DD

AA
CC

BB

Component 
Registry

Design 
Document

Scenarios

Interaction 
Data

Dependency 
Graph

Component 
Interfaces

Package of 
SCAlized

Component(s)

Option 2

Option 1

Option 1 and Option 2 
are alternatives

SCAlization
Requirement Collector

To Be SCAlized
Component(s)

Legacy 
Surrogate

Legacy 
Surrogate

Step 1

Step 5

Step 4.1

Step 4.2

Step 2, 3

 

Fig. 3. System Architecture for Partially Reuse Existing Component-Based System in Ser-
vice-Oriented Environment 

The system is composed by a set of components to satisfy the following function: 

1) Acquiring the internal structure of the existing component-based system into "De-
pendency Graph" and "Component Interfaces" 

Option1 (Tracing approach): with this approach we will need input of several sce-
narios for using the original component-based system; these scenarios will be parsed 
and executed by a scenario execution engine within the original component-based 
system; through the execution, an interaction tracer (which can be built on top of ex-
isting products like Tivoli) will be responsible for capturing all the interaction data 
among the components of the original component-based system; the interaction data 
will be sent to a dependency analyzer and generate the dependency graph, which con-
tains a) a set of components with component interface definitions b) a set of depend-
encies that are mainly representing the invocation relationship among components.  

Option2 (Design Document approach): with this approach we assume the design 
documents and component registry are ready for the original component-based system, 
and therefore the "Dependency Graph" and "Component Interfaces" can be easily 
acquired from understanding the design documents. 

2) Specifying the requirement to externalize the existing component-based system 

SCAlization Requirement Collector: This is a component to help define the require-
ments for externalizing an original component-based system. The tool will provide UI 



252 H.Y. Huang et al. 

to visualize all the components within the original component-based system, and the 
user can use this UI to choose a) SETA: the set of components that will remain in the 
newly generated package b) SETB: the set of components that need to be externalized 
as surrogate components c) SETC: the set of components that will become the external 
dependency of the newly generated package. 

3) Automatically generating the “Legacy Surrogates” as well as “Target Surrogate” 

Legacy Surrogate Generator: This is a component to generate legacy surrogates that 
will be combined with the runtime package of the original component-based system 
saftisfying the following results 

♦ With the same names and interfaces of components in SETC, with all the invo-
cations redirected to Target Surrogate. 

Target Surrogate Generator: This is a component to generate Target Surrogate (SCA 
surrogate) satisfying the following results 

♦ With the same interfaces of components in SETB, with all the invocation redi-
rected to SETB 

♦ Interfaces that will be called by SETC legacy surrogates, and will be redirected to 
other SCA components as referenced services. 

Packager: This component will take the original package, legacy surrogates and SCA 
surrogate as input and generate two outcomes 

♦ A composition package that contains the SCA surrogate that can be used for 
composition with other SCA components. 

♦ A deployment package that contains the original components (SETA, SETB) and 
legacy surrogates (SETC). 

4   Example Scenario 

To further illustrate the approach proposed in this paper, we give an example scenario 
on wrapping reusable components from a legacy EJB-based application. This is an 
online flower store hosted by a small company. As the company grows, it wishes to 
extend their business to add all kinds of gifts in their store. Moreover, it wishes to 
enable more ways of payment than before. Since their bookkeeping application is 
purchased from third party, the company does not have the source code of the appli-
cation. In the meanwhile, the company wants to keep the valuable information of 
customer and their order history. Thus, an ideal way is to reuse the customer and order 
related components, while developing new catalog, inventory, and payment related 
components. Furthermore, the company wishes to develop these new components in a 
SOA way, thus, these components could be easily replaced if needed in future. 

Our approach actually provides a good solution for this company. We could wrap 
existing customer and order related components as reusable SCA component and de-
velop the new components as SCA components. Thus, all these components could be 
easily assembled in SCA way. 

After identifying the scope to reuse, we need to analyze the dependencies among 
EJBs in legacy application. An instrumentation is introduced in EJB container to log 



 A Lightweight Approach to Partially Reuse Existing Component-Based System 253 

the EJB invocations with details that include the invoked bean name, method name and 
the invoker, the EJB who made this invocation. Fig. 4 shows the resulting dependency 
diagram of the legacy application.  

 

Catalog

Order

Inventory

Customer

Payment

Components 
to be reused

CatalogCatalog

OrderOrder

InventoryInventory

CustomerCustomer

PaymentPayment

Components 
to be reused

 

Fig. 4. Dependencies among Components of Legacy Online Store Application 

The major components of the legacy application include Catalog, Order, Customer, 
Inventory and Payment components. After customer selects goods from Catalog, the 
Catalog will invoke Order component to create an order. Then the Order component 
will invoke Customer component to get the detailed information of the customer and 
invoke Inventory component to get and deduce the amount of the item. Furthermore, 
the customer component will invoke Payment component to interact with some online 
payment system. 

Based on the result of dependency analysis, we could find that the depended com-
ponents include Payment and Inventory. Thus, the provided interfaces of the components 
to be reused are Order and Customer, while the required interfaces of the components to 
be reused are Payment and Inventory. With all these provided and required interfaces, we 
will generate three types of adapters as shown in Fig. 5. 

 

Legacy Adapter:

EJB -> SCA Service (Web Service-Enabled)

EJB
SCA 

Service

SCA 
Service

EJB
SCA 

Reference
SCA 

Service

Service Adapter:

SCA Service -> EJB

Reference Adapter:

SCA Service -> SCA Reference

Legacy Adapter:

EJB -> SCA Service (Web Service-Enabled)

EJB
SCA 

Service
EJB

SCA 
Service

SCA 
Service

EJB
SCA 

Service
EJB

SCA 
Reference

SCA 
Service

SCA 
Reference

SCA 
Service

Service Adapter:

SCA Service -> EJB

Reference Adapter:

SCA Service -> SCA Reference
 

Fig. 5. Three Types of Adapter 



254 H.Y. Huang et al. 

With interfaces of Payment and Inventory components, we could generate legacy 
surrogates for Payment and Inventory components. These legacy surrogates are legacy 
adapters for invocations on their EJB interfaces to the SCA surrogate through web 
service. With all these interfaces, we could generate a SCA surrogate, Or-
der&Cutomer’, which acts as both Service adapter and Reference adapter. The SCA 
surrogate provides services with the same functions as Order and Customer and re-
quires the same functions as Payment and Inventory. Moreover, the SCA surrogate 
delegates invocations on its SCA service to Order and Customer EJB components and 
delegates invocations on Inventory and Payment functions to its SCA references. 

After generating aforementioned surrogates, we could package SCAlized compo-
nent for further reuse. In this case, we package Order and Customer components, leg-
acy surrogate for Payment, and legacy surrogate for Inventory together as legacy part of 
the SCAlized component. In the meanwhile, we package the SCA surrogate, Order & 
Customer’, as SCA part of the SCAlized component. 

 

Payment’

SCA Container

Inventory’

Catalog’

EJB Container

Order

Customer

Payment

Inventory

Order & 
Customer’

Legacy 
Surrogate

EJB 
Component

SCA 
Component

Web Service 
Interface

Web Service 
Invocation Point

EJB Invocation 
Point

Legend
SCA Service

SCA ReferenceEJB Interface

Customer Service
Order Service

Payment Service
Inventory Service

Payment Reference

Inventory Reference

Payment’Payment’

SCA Container

Inventory’Inventory’

Catalog’Catalog’

EJB Container

OrderOrder

CustomerCustomer

PaymentPaymentPayment

InventoryInventoryInventory

Order & 
Customer’

Legacy 
Surrogate

EJB 
Component

SCA 
Component

Web Service 
Interface

Web Service 
Invocation Point

EJB Invocation 
Point

Legend
SCA Service

SCA ReferenceEJB Interface

Customer Service
Order Service

Payment Service
Inventory Service

Payment Reference

Inventory Reference

 

Fig. 6. Deployment Diagram of the New Online Store Application 

Finally, we could reuse the packaged SCAlized component in the new online store 
application. As shown in Fig 6, the legacy part of the SCAlized component is deployed in 
an EJB container, while the Order & Cutomer’ is wired with newly developed SCA 
components, including Catalog’, Payment’, Inventory’, and deployed in a SCA container. 

5   Conclusion 

This paper proposes a lightweight approach to partially reuse existing components. The 
basic idea of this approach is to wrap the interfaces provided by the components to be 
reused as provided services of a SCA component and externalize the dependency on 
other components as required services of the SCA component. The resulting SCA 
component could be easily assembled with other SCA components. Detailed description 



 A Lightweight Approach to Partially Reuse Existing Component-Based System 255 

of the approach is given, while a supporting system is also proposed to enable this ap-
proach. Moreover, an example scenario is given to better illustrate the usage of the ap-
proach in real world. 

Currently, we only apply the approach in an EJB-based application. However, we 
will try to apply the approach to more applications based on more component models, 
including CORBA, COM, and etc. While the analysis of component dependency in the 
example presented in this paper is relatively easy, this analysis will be more difficult in 
a large component-based application. We are considering leveraging all kinds of static 
& dynamic analysis approach in the supporting system in the future. Furthermore, 
while there are cases the to-be-reused part is clearly understand beforehand, there are 
still cases that people just want to package reusable components in advance, while they 
have not yet decided where to reuse. In these cases, without design document, we need 
to unveil the design of the legacy application from the source code or even executable 
files. Thus, we consider leveraging all kinds of design recovery approaches before we 
try to identify the scope to reuse. 

References 

1. Belady, L.A., Evangelisti, C.J.: System Partitioning and its Measure. Journal of Systems and 
Software 2(1), 23–29 (1982) 

2. Chiricota, Y., Jourdan, F., Melancon, G.: Software Components Capture using Graph 
Clustering. In: Proc. of 11th IEEE International Workshop on Program Comprehension, May 
2003, pp. 217–226 (2003) 

3. van Deursen, A., Kuipers, T.: Identifying objects using cluster and concept analysis. In: Proc. 
of 21th IEEE International Conference on Software Engineering, May 1999, pp. 246–255 
(1999) 

4. Ding, L., Medvidovic, N.: Focus: a Light Weight, Incremental Approach to Software Archi- 
tecture Recovery and Evolution. In: Working IEEE/IFIP Conference on Software Archi- 
tecture, Amsterdam, Netherlands, August 2001, pp. 191–200 (2001) 

5. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and its Use in 
Optimization. ACM Transactions on Programming Languages and Systems 9(3), 319–349 
(1987) 

6. Harris, D.R., Yeh, A., Reubestein, H.B., Yeh, A.S.: Reverse Engineering to the Architectural 
Level. In: Proceedings of the 17th International Conference on Software Engineering, Seattle, 
Washington, April 1995, pp. 186–195 (1995) 

7. Hecht, M.S.: Flow Analysis of Computer Programs. North-Holland, Amsterdam (1977) 
8. Hutchens, D., Basili, R.: System Structure Analysis: Clustering with Data Bindings. IEEE 

Transactions on Software Engineering 11(8), 749–757 (1985) 
9. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.: Using Automatic 

Clustering to Produce High-Level System Organizations of Source Code. In: Proc. of 6th 
IEEE International Workshop on Program Comprehension, June 1998, pp. 45–52 (1998) 

10. Mancoridis, S., Mitchell, B., Chen, Y., Gansner, E.R.: Bunch: A Clustering Tool for the 
Recovery and Maintenance of Software System Structures. In: Proc. of 15th IEEE International 
Conference on Software Maintenance, August 1999, pp. 50–62 (1999) 

11. Muller, H., Orgun, M., Tilley, S., Uhl, J.: A reverse engineering approach to subsystem structure 
identification. Journal of Software Maintenance: Research and Practice 5(4), 181–204 (1993) 

12. Pagan, F.G.: Partial Computation and the Construction of Language Processors. Prentice-Hall, 
Englewood Cliffs (1991) 



256 H.Y. Huang et al. 

13. Pauw, W.D., Helm, R., Kimelman, D., Vlissides, J.: Visualizing the Behavior of Object-Oriented 
Systems. In: Proc. of the 8th Annual Conference on Object-Oriented Programming Systems, 
Languages, and Applications (OOPSLA 1993), pp. 326–337. ACM Press, New York (1993) 

14. Schwanke, R.: An intelligent tool for re-engineering software modularity. In: Proc. of 13th 
IEEE International Conference on Software Engineering, May 1991, pp. 83–92 (1991) 

15. Purewal, S.: Systems and Methods for Modeling and Generating Reusable Application Com- 
ponent Frameworks, and Automated Assembly of Service-Oriented Applications from Existing 
Applications. United States Patent Application Publication, Pub. No.: US 2005/0144226 A1 
(June 30, 2005) 

16. Moussallam, F., Evelyn, R., Anzizu, M.D., Wilson III, W.W.: System and Method for 
Migrating Applications from a Legacy System. United States Patent Application Publication, 
Pub. No.: US 2006/0041862 A1 (February 23, 2006) 

17. Kulkarni, V.V., Reddy, S.S.: Method and Apparatus for Reengineering Legacy Systems for 
Seamless Interaction with Distributed Component Systems. United States Patent Application 
Publication, Pub. No.: US 2003/0055921 A1 (March 20, 2003) 

18. Dyla, W., Gallagher, M.D., Hannay, S.D., Hays, R.L., Lindstrom, D.J.: System and Method 
for Providing Communication among Legacy Systems Using Web Objects for Legacy 
Functions. United States Patent Application Publication, Pub. No.: US 2002/0116454 A1 
(August 22, 2002) 

19. Liang, J., Hodaie, P.: System and Method for Interfacing with a Legacy Computer System. 
United States Patent Application Publication, Pub. No.: US 2004/0054812 A1 (March 18, 
2004) 

20. SCA Assembly Model V1.00, http://www.osoa.org/ 
 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 257–261, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Towards Variable Service Compositions Using VxBPEL 

Chang-ai Sun1 and Marco Aiello2 

1 School of Computer and Information Technology, Beijing Jiaotong University  
100044, Beijing, P.R. China 
casun@bjtu.edu.cn 

2 Department of Computing Science, The University of Groningen  
Nijenborgh 9, 9747 AG, Groningen, The Netherlands 

aiellom@cs.rug.nl 

Abstract. The Business Process Execution Language (BPEL) is a widely recog-
nized executable language supporting the specification of process-oriented service 
compositions. However, the language is limited in addressing variable require-
ments in the description of business processes. We propose to construct variable 
and maintainable Web services compositions with VxBPEL, an extension to BPEL 
we developed to define variability in business process specification. We present the 
main concepts of VxBPEL and show how to achieve better adaptation and vari-
ability maintenance of service compositions, which is particularly desired in the 
context of dynamically changing business goals and processes.  

1   Introduction 

The growing availability of Web services both on intranets and on the Internet makes 
attractive to create Web service compositions to provide value-added functionalities 
[8]. Consider a travel agency service, for instance, which may be composed of flight 
and accommodation services, provided by third party providers. Since Web services 
themselves are deployed and executed in open and dynamic environments, the avail-
ability of service instances at run-time is an issue by itself. A composition should be 
flexible enough so that a flight service can be substituted by another one when a given 
service instance becomes unavailable. Furthermore, the user may have quite different 
requirements, for instance depending on the type of trip. When a traveler is arranging 
his/her personal trip to China, he/she would prefer to get the cheapest flight and ac-
commodation. However, if it is a business trip, more expensive solutions may be vi-
able. Obviously, implementing such a business process with a static Web service 
composition requires a great deal of recoding and manual work. 

VxBPEL[7] is an extension of BPEL [4] to deal with adaptation in Web service 
compositions from the perspective of variability management. VxBPEL addresses the 
adaptive composition of Web services by providing constructs for explicitly managing 
variability at the composition language level, and treats the changes as first-class enti-
ties. This is a novelty with respect to current approaches [2-3,5-6], particularly those 
focusing on the implementation level.  

In this paper, we propose to construct variable Web service compositions with 
VxBPEL and show how such compositions are adaptive and maintainable. We use the 
travel agency example for illustrational purposes. In particular, we focus here on the 



258 C. Sun and M. Aiello 

explicit variability management in those cases involving dependent variation con-
figurations, such as dependency between the flights and accommodation, or depend-
ency between flights and frequent flyer programs.     

2   Background 

Variability is the ability of a software system or artifact to be extended, changed, cus-
tomized, or configured for use in a specific context [9]. There are two important con-
cepts in variability, namely variation points and variants. Variation points are locations 
in the design or implementation at which variations will occur, and variants are the 
alternatives that can be selected at variation points. Variability management includes 
the design, use, and maintenance of variability [1].  

In order to introduce variability management into service compositions, VxBPEL 
extends BPEL with the constructs for defining and managing the variability. During the 
development of constructs for variants, variation points, and their associations, 
VxBPEL employs the COVAMOF variability framework [9] and adapts it to the con-
text of Web services. The choice of COVAMOF is based on its prominent features, 
including treating variation points and dependencies as first-class citizens, tool support 
and its validation in industry.  

3   Constructing Variable Compositions with VxBPEL 

Let us consider the travel agency example again and model the variability with 
VxBPEL. There are usually several airlines which can provide a flight service required 
by the customer. This means that there may exist variation with the invocation of flight 
services. During the service composition design, we need to introduce the variation 
point at the place where the flight service is invoked. Fig. 1 depicts the modified BPEL 
process, where the activity <invoke> in the original BPEL process is replaced by the 
variation configuration. Without loss of generality, we consider two airlines, namely 
LH and CA. The choice between two variants is determined by the current configura-
tion of the process.  

VxBPEL supports complex realization dependencies during the service compositions. 
For example, an airline may have hotel partners offering discounts to the travelers. In this 
situation, the travel agency needs to specify the association between airlines and hotels, in 
order to provide the cheapest travel services to the customers who are concerned with the 
total travel cost. During the service composition, one can use ConfigurableVariationPoint 
for specifying the dependencies of such a complex service composition. Fig. 2 depicts the 
major segments for specifying the dependency realization between airlines and hotels. In 
the example, CA is the higher level variant and a set of hotel services are lower level 
variants for providing the discounted accommodation.  

With VxBPEL, designers can focus on the main logic of business processes and, at the 
same time, specify the variable elements during service compositions. The specifications 
of VxBPEL clearly integrate main business logic and adaptation of process elements. 
Such service composition specifications are easily adapted, because the variability 
management will enable the selection of alternative variants at runtime. This is often the 
 



 Towards Variable Service Compositions Using VxBPEL 259 

<vxbpel:VariationPoint name= “selecting an airline service”> 
<vxbpel:Variants> 

<vxbpel:Variant name= “CA”> 
 <vxbpel:VPBpelCode> 

               <invoke inputVariable="FlightRequest" name="processingRequest "  
operation= "processRequest" outputVariable="requestResponse"  
partnerLink="AirlinesCA" portType="AirlinesCA:FlightProcessing"> 

            <target linkName="Airlines-to-Agent"/> 
            <source linkName="Agent-to-Airlines/> 

</invoke> 
</vxbpel:VPBpelCode > 

</vxbpe:Variant> 
<vxbpel:Variant name= “LH”> 

<vxbpel:VPBpelCode> 
               <invoke inputVariable="FlightRequest" name="processingRequest "  

operation= "processRequest" outputVariable="requestResponse"  
partnerLink="AirlinesLH" portType="AirlinesLH: FlightProcessing"> 

                   <target linkName="Airlines-to-Agent"/> 
                   <source linkName="Agent-to-Airlines/> 

</invoke> 
</vxbpel:VPBpelCode > 

</vxbpel:Variant> 
</vxbpel:Variants> 

</vxbpel:VariationPoint> 

Fig. 1. The travel agency composition with variant configuration points 

<vxbpel:ConfigurableVariationPoint id="1" defaultVariant="default"> 
<vxbpel:Name>... </vxbpel:Name> 
<vxbpel:Rationale>...</vxbpel:Rationale> 
<vxbpel:Variants>   

<vxbpel:Variant name="default "> 
<vxbpel:VariantInfo> Airline CA and its partner hotels includes the default, hotelA,  

and hotelB which provide discounts.  
</vxbpel:VariantInfo> 

<vxbpel:RequiredConfiguration> 
<vxbpel:VPChoices> 

<vxbpel:VPChoice vpname="VP1" variant="default"/> 
<vxbpel:VPChoice vpname="VP2" variant="hotelA"/> 
<vxbpel:VPChoice vpname="VP3" variant="hotelB"/> 

</vxbpel:VPChoices> 
</vxbpel:RequiredConfiguration> 

</vxbpel:Variant> 
<!-- Another variant i.e. LH and its dependent services can be defined here. --> 

</vxbpel:Variants> 
</vxbpel:ConfigurableVariationPoint> 

Fig. 2. The illustration of service compositions with complex realization dependencies 

case in the world of Web services where requirements change frequently and there is 
loose control over the components. The variation is supported both at compile-time and at 
run-time. The latter is achieved by implementing an extension to a BPEL engine to in-
terpret the variability constructs. One may thus claim that service compositions with the 
VxBPEL achieve better adaptation than those with standard BPEL.  

We argue that the variation of service compositions with VxBPEL is easier to un-
derstand since one can identify variation points and variants just by their prefixes. A 
variability management tool can aid the designer to comprehend the variation involved 
in service compositions. This is particularly useful when the variation of service 



260 C. Sun and M. Aiello 

compositions is complex enough. Additionally, one can change variability manage-
ment of service compositions by altering the variation configuration. For example, if 
the airline CA has more than one partner hotel (or needs to change its partner hotels), 
one just has to alter vxbpel:VPChoices to adapt to the new situation. In this sense, we 
claim that service compositions with VxBPEL have better maintainability than those 
with standard BPEL in terms of support of variation.  

With VxBPEL, one can specify more variable and flexible service compositions, 
which thereby are able to address various dynamic changes within business processes. 
VxBPEL consists of BPEL native constructs and variability constructs. For a variable 
service composition instance, these two parts are seamlessly integrated in a VxBPEL 
file. Developers use BPEL native constructs for the normal service composition while 
the latter is used to specify the variable parts within the service composition. When 
these variability constructs with the prefix vxbpel are used, the namespace defining the 
VxBPEL elements must be included.  

4   Concluding Remarks 

Constructs provided by the current version of BPEL can be used to define fixed service 
compositions by specifying activities and interactions between activities. Although some 
structured activities such as the switch, may be used to select different execution paths, 
the selection is limited to the predefined enumerative choices and hence the configuration 
supported is static. When a service cannot satisfy a given QoS requirement or is un-
available, it needs to be replaced. When this occurs, the dependent services must be 
replaced correspondingly. Such replacement is not possible automatically with current 
standards. VxBPEL, on the other hand, is designed so that new variants can be introduced 
and managed at runtime. This allows for run-time reconfiguration and significant com-
position flexibility to be available within a VxBPEL process. 

Acknowledgements 

We thank all the contributors of the COVAMOF and the VxBPEL platforms, and Elie 
El-Khoury for comments. The research is partially supported by the Science and 
Technology Foundation of Beijing Jiaotong Univ. (Grant No. 2007RC099) and the EU 
Integrated Project SeCSE (IST Contract No. 511680). 

References 

[1] Bachmann, F., Bass, L.J.: Managing variability in software architectures. In: Proceedings of 
ACM SIGSOFT Symposium on Software Reusability, pp. 126–132 (2001) 

[2] Charfi, A., Mezini, M.: AO4BPEL: An Aspect-Oriented Extension to BPEL. World Wide 
Web Journal: Recent Advances on Web Services (special issue) 10(3), 309–344 (2007) 

[3] Colombo, M., Nitto, E.D., Mauri, M.: SCENE: a service composition execution environment 
supporting dynamic changes disciplined through rules. In: Proceedings of ICSOC 2006. 
LNCS, vol. 4292, pp. 191–202. Springer, Heidelberg (2006) 



 Towards Variable Service Compositions Using VxBPEL 261 

[4] Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Weerawarana, S.: Business process 
execution language for Web services, Version 1.1 (2003) 

[5] Ezenwoye, O., Sadjadi, S.M.: TRAP/BPEL: A Framework for Dynamic Adaptation of Com-
posite Services, http://www.cs.fiu.edu/~sadjadi/Publications/TechRep- 
FIU-SCIS-2006-06-02-TRAP-BPEL.pdf 

[6] Erradi, A., Maheshwari, P.: AdaptiveBPEL: a Policy-Driven Middleware for Flexible Web 
Services Compositions. In: Proceedings of Middleware for Web Services (MWS) (2005) 

[7] Koning, M., Sun, C., Sinnema, M., Avgeriou, P.: VxBPEL: Supporting variability for Web 
services in BPEL. In: Information and Software Technology. Elsevier, Amsterdam, http:// 
dx.doi.org/10.1016/j.infsof.2007.12.002 

[8] Papazoglou, M.P.: Web services technologies and standards. ACM Computing Surveys 
(submitted, 2006), http://infolab.uvt.nl/pub/papazogloump-2006-97.pdf 

[9] Sinnema, M., Deelstra, S., Hoekstra, P.: The COVAMOF derivation process. In: Morisio, M. 
(ed.) ICSR 2006. LNCS, vol. 4039, pp. 101–114. Springer, Heidelberg (2006) 

 



Abstract Reachability Graph for Verifying Web

Service Interfaces∗

Xutao Du, Chunxiao Xing, and Lizhu Zhou

Research Institute of Information Technology,
Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science and Technology, Tsinghua University,

Beijing 100084, China

Abstract. Web Service Interface Control Flow Automata(WCFA) is
presented to model web service interfaces. An Abstract Reachability
Graph(ARG) is constructed for the composite web service based on avail-
able WCFAs. Nodes in ARG are equipped with a state formula which is
an overestimation of the concrete reachable state properties. The algo-
rithm we present to compute the ARG is a variation of the depth first
search algorithm. State formulas are computed at the same time with the
construction of ARG. Assertions can be made at control points(nodes)to
express certain properties. A SAT solver is used to check whether as-
sertions are logical consequences of the state formulas. Then the an-
swer(valid or invalid) will give designers enough information to decide
whether the composite web service works as intended.

1 Introduction

Web services provide an effective way for software reuse. They are designed to be
packaged software units which can be called or orchestrated by other applications
over the internet. Therefore, the definition of web service interfaces are very
important for correctly and effectively reusing of them.

We present Web Service Interface Control Flow Automata(WCFA), which is
an extension of control flow automata [1, 2], to describe web service interfaces.
In order to capture the global behavior of a composite web service, an abstract
reachability graph(ARG) is constructed based on the WCFAs of the involved web
services. Every node is a control point of the composite web service, and contains
a state formula which is an overestimation of the concrete state properties in
real execution. It is the reason our formalism is called abstract.

Assertions can be made at every nodes of the ARG. A SAT solver(CVC3) [3]
is used to check the validity of the assertions under the assumptions of the state
formula of the same node. The result of the SAT solver will tell whether design
errors of the composite web service are found.

We will use the example of a trip request application in the following sections.
Figure 1 shows the possible interactions of that application.
∗ This work is funded by the Support Program of the National ’11th Five-Year-Plan’

of China under Grant No. 2006BAH02A00 and the National High Technology De-
velopment Program of China under Grant No. 2006AA010101.

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 262–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Abstract Reachability Graph for Verifying Web Service Interfaces 263

Fig. 1. Composition for TripRequest

2 Web Service Interface Control Flow Automata

Figure 2 gives the WCFA of a travel agency’s TripRequest web method, which
accepts customer’s request to order a trip.

Informally, a WCFA is a directed acyclic graph. Nodes are control points of
the web service, which have two fields and are depicted by a tuple <n,t>.
The number field n is the unique number for the control point. The type field

Fig. 2. WCFA for TripRequest



264 X. Du, C. Xing, and L. Zhou

t∈ NT={start, sq, test, ++, +-, *+, *-, rt} describes the type of the
control point. A start node is the start point of a web service, while rt means
return. A sq node has a sequential property and it has one input edge and one
output edge. A test node has one input edge and possibly several output edges,
only one of which will be chosen according to the label on the edges. A ++(*+)
node is the start node for a wait-for-one(wait-for-all) parallel composition. Ev-
ery *+(++) node has a collecting node whose type is *-(+-). A *-(+-) node has
several input edges and one output edge. Edges are web method calls, predicate
tests or assignments.

3 Abstract Reachability Graph

Abstract reachability graph(ARG) is used to model the global behavior of web
services compositions. Every node in ARG is described by a state formula,
which records information about the paths leading to that node. The algorithm
DfARGComp is a variation of the depth first traversal algorithm.

DfARGComp starts from the root of the WCFA of the composite web service.
Other relevant information such as the current call stack and state formula
also served as parameters. In the trip request application, the search will begin
at <T#1,start>. When computing the abstract reachability graph, we need to
deal with each of the outgoing edges from the node being processing(say m) to
another node, say m’. If m’ is not a collecting node (the type is not in {*-,+-}),
we have two cases to consider. If the outgoing edge is a method call VB=<IMT>
with a corresponding WCFAIMT , then we need to expand it by recursively calling
DfARGComp to get the ARGimt. Then we recursively call DfARGComp to get ARGm′

and create edges to link ARGimt and ARGm′ . If the outgoing edge is a method call
VA=<EMT> which has not a WCFA, or a predicate test [p], or a normal assignment
VN=ST, then we recursively call DfARGComp to compute ARGm′.

When dealing with collecting nodes, there are two cases: if there are still other
incoming edges to be processed, then we need to wait and only state formulas
are updated; otherwise it is the last edge then we call DfARGComp recursively
to obtain ARGm′. When we have processed all outgoing edges of m, all children’s
abstract reachability graphs are computed. What we need to do is just add all
the relevant nodes and edges up to get ARGm and return.

The essence is that when we are constructing an ARG, the state formula of the
current node should be correctly computed and passed to DfARGComp as a pa-
rameter. Then each node processed by DfARGComp will have their state formulas
computed during the search. State formulas are defined as an edge descriptor or
an conjunction of several edge descriptors. An edge descriptor describes an edge
or a possible junction of several parallel edges.

Generally, when control flows from one node to another through an edge, the
state formula of the latter node is just obtained by adding the edge descriptor
to the state formula of the former node. The state formula of those nodes that
have several incoming edges is obtained by combining all the state formulas of
the preceding nodes and incoming edges.



Abstract Reachability Graph for Verifying Web Service Interfaces 265

Theorem 1. If a total of k WCFAs is involved in the computation of the ab-
stract reachability graph for a composite web service, Algorithm DfARGComp runs
in O(E) time, where E are the total number of edges of the k WCFAs.

4 Verification

Abstract reachability graph is designed for verification. What we want to verify
is certain properties at control points. For example, at node <T#13,rt>, the
TripRequest service will return FAIL. Although we may not know why it fails,
we know the Travel Agency should not pay for room reservation for a FAIL
request. Thus we require ([!O_RoomPay == OK]) as an assertion. Assertions are
quantifier-free propositional logic formulas over the predicate tests in ARG.

Then we fed the state formula of at node <T#13,rt> as assumptions and the
assertion ([!O_RoomPay == OK]) as the conjecture to be checked into CVC3.
It will return invalid because the state formula at that node contains the edge
descriptor [O_RoomPay == OK] ∨ [O_RoomPay == FAIL]. Therefore, we have
found an error in our design of TripRequest.

5 Conclusion

We present WCFA as a tool for modeling web services invocation behaviors.
For the verification of web service compositions, we propose to use the Abstract
Reachability Graph(ARG). ARG is computed by exploring involved WCFA(s)
in a depth first search manner with necessary WCFA(s) being expanded. Nodes
in ARG are equipped with a state formula, which captures an overestimation of
concrete states that can be reached in real running of web services.

Quantifier-free assertions can be made on nodes of ARG. Then a SAT solver
is used to check whether the assertion is the logic consequence of the node’s
state formula. Since both the state formula and the assertion are quantifier-
free, the SAT solver is a decision procedure. Thus the designers of web services
compositions can use the result to decide whether their design is correct.

References

1. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and
tools for analysis and transformation of c programs. In: Computational Complexity,
pp. 213–228 (2002)

2. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast: Applications to software engineering. Int. Journal on Software Tools for Tech-
nology Transfer (STTT) 9(5-6), 505–525 (2007); Invited to special issue of selected
papers from FASE (2004/05)

3. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating validity
checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518.
Springer, Heidelberg (2004)



 

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 266–269, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Reuse: From Components to Services 

Alberto Sillitti and Giancarlo Succi 

Center for Applied Software Engineering, Free University of Bolzano,  
Piazza Domenicani 3, Italy 

{asillitti,gsucci}@unibz.it 

Abstract. In these years, a programming paradigm shift is in progress: re-
searchers and developers are moving from component-based to service-based 
development. This shift is deeply affecting the technology, changing the way of 
addressing old problems and producing new standards and methodologies to 
address the new ones. However, even with this shift, some old problems are 
arising again and their complexity is increasing. One of such problems is the 
identification of a set of components/services that can be integrated to build a 
system. This paper proposes an adaptation of a methodology for ranking and se-
lecting components to a service-based environment. 

1   Introduction 

In this paper, we propose the adaptation to a service-based environment of a method-
ology to select components for building an integrated system [2]. The approach from 
which we are starting has been developed in the EU project CLARiFi (CLear And 
Reliable Information For Integration) (http://clarifi.eng.it/). The project focused on 
the development of a broker architecture to support the selection of the components 
suitable for the development of an integrated system. This approach was innovative 
because it focuses on the problem of selecting a set of components able to work to-
gether to build an entire system (or most of it) instead of selecting a single component 
to address a specific requirement. This work aims at adapting this approach to a ser-
vice-based environment. 

There are many definitions of component in literature [1], we consider the Szyper-
ski’s definition: “A software component is a unit of composition with contractually 
specified interfaces and explicit context dependencies only. A software component can 
be deployed independently and it is subject to third party composition” [6]. According 
to the W3C (http://www.w3.org/), SOA (Service Oriented Architecture) is defined as 
a “set of components which can be invoked, and whose interface descriptions can be 
published and discovered”. 

According to these definitions, a service has all the characteristics of a component and 
some more: 1) it can be developed using different technologies; 2) it can be executed 
independently in different run-time environments. This last feature allows the develop-
ment of systems that result from the run-time integration of several pieces owned and run 
independently. This new kind of integration generates new problems related to the dy-
namic composition: the ability to modify (semi)automatically the structure of a system at 
run-time changing the services involved and/or the integration workflow. 



 Reuse: From Components to Services 267 

 

If a huge set of services is available, the main problem is retrieving the ones that sat-
isfy the requirements of the integrator. Therefore, a requisite for an effective adoption of 
the service-oriented paradigm is the availability of a smart broker service [4]. A broker 
is a mediator between service suppliers and system integrators. Technologies such as 
UDDI – Universal Description, Discovery, and Integration (http://www.uddi.org/), 
ebXML – Electronic Business eXtensible Markup Language (http://www.ebxml.org/), 
and their evolutions have been developed to support the creation of public and private 
directories in which suppliers can deploy the description of their services using a stan-
dard language such as WSDL (Web Service Description Language). However, such 
technologies present several limitations from the points of view of the description and 
the discovery of the services stored in the broker. 

The paper is organized as follows: section 2 presents the proposed process in rela-
tion to the state of the art; section 3 draws the conclusions and presents future work. 

2   The Process and the State of the Art 

The goal of integrators is the inspection of a directory to find services to build a system. 
The task of the broker is to match the integrator’s requirements with internal classification. 

Below are illustrated the steps that compose a system selection (Figure 1). 

• Understanding integrator’s requirements. It means to understand the integrator’s 
“target”. 

• Definition of integrator’s profiles. The broker must understand user profile to 
understand better the requirements. 

• The searching mechanism. The broker “translates” requirements in a query to 
the directory to find candidate services. 

• Ranking a multitude of candidate services. The possible great amount of candi-
date service can be unmanageable. The broker must help the selection of the 
most promising ones. 

• Compatibility. Services must interact each other to be used in a system. The 
broker has to check compatibility among them. 

This paper focuses on how to describe a service to support its retrieval. 
The integrator describes a system through requirements. Natural language is the sim-

plest way to express requirements and it is the ideal notation for human communication. 
Unfortunately, in software requirements it is not the best solution [3]. Another possible 
approach to the problem is the usage of facets [4]. In the early definition, facets are a set 
of pairs key-value that describe properties of a system including both functional quali-
ties (e.g., data formats supported, functionalities offered, etc.) and non-functional ones 
(e.g., price, reliability, response time, etc.). Facets allow providers to describe in a struc-
tured way the relevant aspects of a software system. Moreover, if a common and mean-
ingful set of key-value pairs is defined, potential users can perform advanced searches 
inside a repository. Such queries can be more complex than the traditional keyword 
matching in a plain text description and exploit the additional semantic available in the 
facets such as values in a specific range or in a pre-defined set. In this way, users can 
design queries specifying conditions such as the support of a specific set of features, the 
response time below a specific threshold, the price in a certain range, etc. 



268 A. Sillitti and G. Succi 

 

 

FUNCTIONAL 
REQUIREMENTS 

NON-FUNCTIONAL 
REQUIREMENTS 

COMPATIBILITY 
CHECK 

Requirements 

SERVICES 
SELECTION 

SYSTEM 
SELECTION 

SYSTEM

C
O

N
T

E
X

T
 

 

Fig. 1. The ranking and selection process 

 

FacetType: Quality of Service 

FacetSpecification1 

FacetSpecificationXSD1 

FacetSpecificationXML1 

FacetSpecification2

FacetSpecificationXSD2

FacetSpecificationXML2

…

FacetTy

FacetSpecificati

FacetSpecification

FacetSpecification

Directory 

 

Fig. 2. Example of facet structure and directory 

The ability to find a specific service in a large directory is related to: the quality of 
the taxonomy used to define the keys and the quality of the values inserted in the 
description by the provider. Taxonomies allow the definition of proper keys in a spe-
cific (and limited) domain area. For this reason, the usage of different taxonomies to 
cover different domains is a suitable solution to provide extensive support to facets. 
However, taxonomies are useless if the providers do not use them correctly and do not 
provide a complete description of their services through them. This approach requires 
a considerable amount of effort from the provider but is extremely useful form the 
point of view of the user that is looking for a service. 

This basic definition of facets is very limited since it is not able to support complex 
descriptions, relations among the defined attributes, etc. Such definition is usable for the 
description of software components, but it is not enough flexible to support services. 
The main extension of the original CLARiFi methodology is in the upgrade of the facet 
description. In many cases, the usage of a single value or a set is not enough and some 
properties need to be described in a more expressive way. For this reason, the concept of 
facet has evolved to include complex structures based on XML technologies [5, 7]. 
Facets can be described through a set of XML documents. A facet is defined as a set 
that includes a facet type and one or more facet specifications (Figure 2). A facet type is 



 Reuse: From Components to Services 269 

 

a label that describes the high-level concept of the facet such as quality of service, inter-
operability, etc. while the facet specification is the actual implementation of the concept. 
It is possible that several facet specifications are associated to a single facet type provid-
ing different ways of describing the high-level concept. Every facet specification in-
cludes two documents: an XML schema that defines the structure and the related XML 
implementation. 

3   Conclusions 

In this paper, we have adapted a methodology for retrieving components from a re-
pository to the retrieval of services from a directory. This work introduces a process 
to improve the identification of services and the selection of a complete system build 
using them. The main modification to the previous process is the inclusion of the 
description of the services through XML-based facets that allow a more detailed de-
scription and retrieval. 

The work intends to support the automated selection of services as a human-driven 
process. However, some concepts can be extended and applied at run-time when most 
of the decisions have to be taken by an automated system. 

References 

1. Brown, A., Wallnau, K.: The Current State of Component-based Software Engineering. 
IEEE Software 15(5) (1998) 

2. Clark, J., Clarke, C., De Panfilis, S., Granatella, G., Predonzani, P., Sillitti, A., Succi, G., 
Vernazza, T.: Selecting Components in Large COTS Repositories. Journal of Systems and 
Software 73(2) (2004) 

3. Meyer, B.: On formalism in specifications. IEEE Software 2(6) (1985) 
4. Prieto-Diaz, R., Freeman, P.: Classifying Software for Reusability. IEEE Software 4(1) 

(1997) 
5. Sawyer, P., Hutchinson, J., Walkerdine, J., Sommerville, I.: Faceted Service Specification. 

In: Workshop on Service-Oriented Computing: Consequences for Engineering Require-
ments (2005) 

6. Szyperski, C.: Component Software. Addison-Wesley, Reading (2002) 
7. Walkerdine, J., Hutchinson, J., Sawyer, P., Dobson, G., Onditi, V.: A Faceted Approach to 

Service Specification. In: 2nd International Conference on Internet and Web Applications 
and Services (2007) 

 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 270–273, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Active Binding Technology: A Reuse-Enabling 
Component Model 

Anmo Jeong1, Seungnam Jeong1, Yoonsun Lim2, and Myung Kim2 

1 LiberNex, 138-509 ICT, Seoul National University, 151-742 Seoul, Korea 
{amjeong,hellojsn}@libernex.com 

2 Dept. of Computer Science & Engineering, Ehwa Womans University, 
120-750 Seoul, Korea 

lys96@ewhain.net, mkim@ehwa.ac.kr 

Abstract. One of the primary obstacles to the reuse of independently-developed 
binary components on the industrial level lies in that the existing component 
technologies do not clearly separate component assembly from component de-
velopment for type safety. To tackle this problem with type safety intact, we 
propose a new component model, Active Binding Technology, in which each 
Active Binding component, unlike the conventional one that actually has pro-
vided interfaces only, contains independently-defined required interfaces as 
well. The assembler can later adjust any interface mismatches between pre-
produced Active Binding components in the glue component, whose template 
code is generated from the metadata of the components being combined. 

Keywords: Component Model, Component Reuse, CBD. 

1   Introduction 

UI controls and the components located in the bottom layer of enterprise applications 
designed according to a multi-layered architecture [1] are autonomous. These 
autonomous components depend only on their platforms and do not have any depend-
ency upon other components, and so they are reusable without source code change on 
the existing commercial component technologies such as .NET and Java [2]. 

But an overwhelming portion of components that have a medium granularity be-
tween a typical class and a typical SOA service [3] are designed and developed so as 
to fulfill their job depending on other components’ services. The required interfaces 
these components use in calling the services of their lower-layer (server) components 
are in fact the provided interfaces of the server components. The required interfaces 
of a component based on the existing commercial component technologies are defined 
outside the component (in its server component obviously) and its metadata has only 
the identifiers of the required interfaces and/or the identifier of the component that 
implements the required interfaces [4]. 

We have judged that these shortcomings are stemming from the fact that software 
components are not developed as pure parts like in other engineering disciplines, and 
so have specified three tenets that have to be observed in order to realize the CBD 



 Active Binding Technology: A Reuse-Enabling Component Model 271 

ideal of developing software by the reuse/assembly of independently developed bi-
nary components [5]. 

Tenet 1. Every software component must not include any assumption, metadata, or 
code concerning the composition with other components.  

Tenet 2. Component development process and component composition process should 
be completely separated and independent.  

Tenet 3. Any new software technology or development process should be in seamless 
harmony with and complement the latest commercial software technologies.  

2   Active Binding Component 

The client component based on the existing commercial component technologies calls 
a method of its server object using the reference of a provided interface defined in the 
server component instead of using a self-contained required interface. 

This is because the commercial technologies regard interfaces as types and do not 
allow interfaces with the same identifier (full name) to exist in more than one place, 
nor allow the instance reference of the object implementing a particular interface to be 
assigned in a variable of another interface with a different identifier. A client compo-
nent implemented in this way can hardly be independently reused because it contains 
the code about the dependence on interfaces defined outside it and thus is tightly 
coupled with its server component. 

By contrast, in order to satisfy Tenet 1, the Active Binding component has a struc-
ture in which, when it needs a service from its server component, it actively uses a 
self-contained required interface when calling the corresponding method of the server 
object, instead of passively depending on a provided interface defined in the server 
component. When developing an Active Binding component, the developer only 
needs to define a required interface if a service from a server component becomes 
necessary, and use the reference of the required interface to complete the code. This 
results in a component that self-contains both provided and required interfaces, the 
specifications of which automatically get included in the component metadata. As this 
component does not depend on any outside interfaces, it becomes a ‘complete part’ 
with no assumption about real component assembly. 

3   Active Binding Component Assembly 

Fig. 1 shows the structure of two independently developed Active Binding compo-
nents being combined. When they are combined according to Tenet 2, the mediation 
between calling/called methods is carried out in the glue component whose template 
code is generated out of the metadata of the two components, without having to han-
dle the source code of the client and server components. 

Active Binding Technology, conforming to Tenet 3, supports the component as-
sembly that utilizes the existing design and development experiences. ABT expresses 
the holistic view of the behavior of the set of components that concern each use case 
of the application with an interaction model in a UML sequence diagram, and uses the 
model in assembling components. 



272 A. Jeong et al. 

 

Fig. 1. Active Binding Component Assembly Model 

To elaborate this according to what the developer and the assembly tool does respec-
tively, the developer first places the binary components that concern the use case to be 
assembled in the visual assembly tool, and completes the interaction model by drawing 
message arrows that represent the calling/called relationships among the components. 
Each message arrow is mapped to a glue component that adjusts the discrepancies be-
tween the calling/called interfaces. When the developer opens the properties window of a 
message arrow, the assembly tool reads in and shows the required interfaces information 
of the client component and the provided interfaces information of the server component. 
When the developer then selects the caller method and the called method to be connected, 
the assembly tool generates the glue component, class and method that implements the 
required interfaces, using the metadata read from the components, and also generates the 
code for calling the called method of the server component and inserts it in the generated 
method. 

Then the developer can edit the generated method code to adjust not only syntactic 
discrepancies between the two components but also semantic differences that might 
exist between the parameters/return values of the components. For example, if the 
client component sends a parameter with Korean currency won to the server compo-
nent while the server component requires a parameter with US dollar, the developer 
can solve the problem by inserting in the glue component the code that converts won 
into dollar. 

Detailed descriptions attached to each of the methods in the required and provided 
interfaces using custom attributes can help the developer select and assemble 
caller/called methods afterwards. Also, the developer can express the behavioral se-
mantics of the components to be combined by attaching to every service method of a 
component the identifiers of the required interfaces it depends on, in order of calling. 

4   Conclusion 

The existing commercial component technologies such as Java and .NET provide 
high-quality framework functions and excellent development tools to develop com-
plex distributed systems very efficiently. These technologies, however, do not come 



 Active Binding Technology: A Reuse-Enabling Component Model 273 

up with any solution for assembling binary components with different interfaces 
without changing their source code, making difficult the reuse of non-autonomous 
components that implement business logic. Against this background, we have pro-
posed an extended version of the existing component models, rather than making a 
whole new model, to improve reuse rate and maintenance efficiency while maintain-
ing the high development efficiency the existing technologies provide. 

Active Binding Technology lays a stepping-stone for reusing independently-
developed binary components by providing a practical method to tackle interface mis-
matches, but if it is to properly realize the CBD ideal of 'Development by Assembly' 
with COTS components, further studies for the formal expression of component seman-
tics should be conducted. Also, in order to raise the rate of component reuse to a higher 
level, an additional study to remove the dependency of service components on business 
data objects, which vary from application to application, ought to be carried out.  

References 

1. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Reading 
(2003) 

2. De Prince Jr., W., Hofmeister, C.: Analyzing Commercial Component Models. In: Proceed-
ings of the 3rd IEEE/IFIP Conference on Software Architecture, Montreal, Canada, pp. 
205--219 (2002) 

3. Brown, A., Johnston, S., Kelly, K.: Using Service-Oriented Architecture and Component-
Based Development to Build Web Service Applications. Rational Software Corporation 
(2002) 

4. Magee, J., Tseng, A., Kramer, J.: Composing Distributed Objects in CORBA. In: Proceed-
ings of the 3rd International Symposium on Autonomous Decentralized Systems, Berlin, 
Germany, pp. 257--263 (1997) 

5. Clements, P.: From Subroutines to Subsystems: Component-Based Software Development. 
The American Programmer~8(11) (November 1995) 

 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 274–277, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Collective Reuse of Software Components 
Speeds-Up Reliability 

Iaakov Exman1,2, Guy Zohar2, and Yehuda Hassin2 

1 School of Engineering, Bar-Ilan University, Ramat-Gan 52900, Israel 
exmani@eng.biu.ac.il 

2 Software Engineering Dept., Jerusalem College of Engineering, 
POB 3566, Jerusalem 91035, Israel 

iaakov@jce.ac.il, guyzohar1@gmail.com, hassin@jce.ac.il 

Abstract. Reliable behavior of systems of autonomous agents – such as collec-
tions of deployed robots – is difficult to attain. Agents could provide mutual 
support, but lack of coordination may weaken, rather than increase reliability. 
We propose collective reuse of replaceable software components among 
autonomous agents, based upon a shared factory architecture. Coordinated re-
placement is achievable on-the-fly, whatever the component status: idle, run-
nable or actually running. Replacement propagation among agents grows faster 
with increasing numbers of agents for practical collection sizes, as measured by 
a reliability speedup. The architecture was demonstrated by simulations com-
bining real and virtual robots. 

Keywords: Collective Reuse, Software Components, Shared Factory Architec-
ture, Autonomous Agents, Reliability speedup, Design Patterns. 

1   Introduction 

Predictable and stable behavior of systems of autonomous agents – such as clusters of 
robots or satellites in orbit – is a hard goal to attain. An individual agent may be de-
ployed in distant places or in dangerous environments, and replacement of faulty 
physical modules, may be difficult or virtually impossible to perform.  

Faulty software is replaceable by components having the same interface, but space 
constraints within agents prevent storing all imaginable software replacements, say 
from second source manufacturers. Wireless transmission of software components 
from a fixed station [1] has been proposed to overcome these constraints. 

This paper proposes collective reuse, in which exceptions encountered generate 
events, immediately communicated to the sibling agents, by a shared factory architec-
ture taking care of agent coordination. Otherwise, siblings could fail in the same 
manner as the first agent that detected the fault. Thus all agents benefit from informa-
tion gathered by anyone of them, mutually reinforcing their reliability, without giving 
up the flexibility of autonomous agents.  

In the remainder of the paper, “Collective Reuse” is defined (Section 2), a shared 
factory architecture is introduced (Section 3) and the approach is validated by 
real/virtual robots simulation results (Section 4). A discussion concludes the paper.  



 Collective Reuse of Software Components Speeds-Up Reliability 275 

2   Collective Reuse 

For a system defined as a collection of autonomous agents, reliability is viewed as a 
problem of the whole system. Usually a single agent detects the need of a new/ substi-
tute software component. Possible causes are: 

• Software faults – when a new fault is detected, a new/replacement fault-free 
software component is obtained, and retransmitted to all sibling agents. 

• Hardware faults – say a sensor fails. A new/substitute software component may 
bypass the sensor by an algorithm independent of the faulty hardware. This fault 
must not occur in all siblings, thus retransmission is not automatic. 

Now we can define Collective Reuse: 
 
 
 
 
 
 
Collective Reuse has two essential roles: a- Component availability – to assure that 

a component is available, creating it if not yet found in a repository; b- Coordination 
– to inform siblings of new faults, and dispatch replacements in suitable times. 

3   The Shared Factory Software Architecture 

Shared factories perform the two referred roles – factory and coordinator – shown as 
the upper orthogonal states of the Shared Factory Statechart in Fig. 1. 

The coordinator has three orthogonal internal states: a) Generate event – catches 
product execution exceptions and generates replacement events; b) Handle event –
notifies the factory to trigger a new instantiation cycle, then applies the chosen re-
placement policy; c) Replace file – imports necessary dlls (dynamically linked librar-
ies) and swap files to memory, to allow factory production. 

The Factory extends the 'factory method' design pattern [2]. The extension allows 
events to trigger the factory and notifies the other siblings. It also loads required dlls. 

The instantiation policy is as follows. For each component Ci, a users’ List(i) – 
which sibling agents j use the component – remembers which objects were created. 
Users in List(i) are notified of a faulty component before starting its replacement.  

To avoid duplicate objects, the factory does not instantiate objects while a compo-
nent is being replaced. In this case an already loaded component is marked as faulty. 
A user creation request waits until replacement finishes and the new Ci has no faults. 
Only then, an object is instantiated. A creation policy pseudo code is seen next. 

 

CreatingObject(Uj, Ci) 
If Ci Not loaded then  /* first time */            

            Load Ci;   Else    
            MakeNewList(List(i));           While (Ci has Fault)  Wait(1); 
                  MakeNewObject(Ci);              MakeNewObject(Ci);  

       InsertUserList(List(i),Uj);            InsertUserList(Uj); 

Definition: Collective Reuse among a collection of similar autonomous agents 
[the siblings], is an active reuse mechanism whereby an agent communicates a 
detected fault, triggering its siblings to do on-the-fly addition or replacement of 
software components, while preserving their autonomous behavior.



276 I. Exman, G. Zohar, and Y. Hassin 

  

 

 

 

 

 

 

 

 

 

Coordinator Factory 
 

Trigger 
Factory 

Check & 
Load-DLL

Create 
Product 
Instance 

Generate Event Handle Event Replace File 

Wait to 
execute

Wait for 
Event 

Wait for 
request 

Product 
Execution

Notify 
Factory 

Import 
DLL 

exception

Catch 
Exception

Replacement 
Policy Swap 

Files 

Shared Factory  

 

Fig. 1. Shared Factory architecture – The coordinator internal states are orthogonal. Factory and 
Coordinator interactions are: an event handler triggers the factory (in red); the factory loads a 
dll only after it was imported by the coordinator (in blue). 

4   Results and Validation: Reliability Speedup 

Collective reuse was demonstrated in a collection of real three-wheeled mobile robots 
and virtual robots. Robots perform navigation tasks in a room with obstacles. A laptop 
carried by physical robots runs an MS.NET environment. The system is written in C#. 

For autonomous robots, speedup is a reasonable metric to assess collective reuse 
efficiency – time spent in the Handle_Event coordinator state. Reliability speedup is 
defined as the ratio between a single robot time T1 and the average TN of N robots: 

Speedup is seen in Table 1 and Fig. 2. A table entry is the mean of tens of single runs. 

Table 1. Handle_Event duration and speedup 

Number of 
Robots 

Total Duration 
(sec) 

TN = Average Du-
ration per Robot 

Reliability 
Speedup 

1 0.406 0.406 1.000 
2 0.398 0.199 2.040 
5 0.500 0.100 4.063 
8 0.438 0.055 7.429 

10 0.953 0.095 4.263 
20 2.656 0.133 3.059 

Speedup = T1 / TN (1) 



 Collective Reuse of Software Components Speeds-Up Reliability 277 

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

# Robots

S
p

ee
d

u
p

 

Fig. 2. Collective reuse speedup against robot numbers – Speedup is a trade-off between 
autonomous processing and communication costs. Almost linear increase up to a point of di-
minishing returns (curve with points) is compared with strict linearity. 

5   Discussion: Related and Future Work 

Collective reuse speedup is very intuitive. A single robot must discover the software 
fault, stop the faulty component, trigger the factory, and do the replacement by itself. 
None of the activities is spared. A robot collection has a double source of savings:  

a. Increased probability of fault discovery by any robot, saves from its siblings the 
need to trigger the factory;  

b. Reduced probability that many robots run the faulty component. Most robots 
replace the latter in a background mode, while running other tasks. 

Representative literature samples refer to component state capture [5], robotic 
software reconfiguration [3], and to autonomic systems [4]. 

Future work will deal with variations of replacement policies and multiple shared 
factories to show the significance of collective reuse for large robot numbers. 

References 

1. Exman, I., Yermol, S., Hassin, Y.: Run-Time Software Module Swapping Increases Robot 
Survivability. In: Proc. 1st Israel Conf. on Robotics, Tel-Aviv University, Israel (2006) 

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable 
Object-Oriented Software. Addison-Wesley, Boston (1995) 

3. MacDonald, B., Hsieh, B.P., Warren, I.: Design for Dynamic Reconfiguration of Robot 
Software. In: 2nd Int. Conf. Autonomous Robots and Agents, New Zealand (2004) 

4. Patouni, E., Alonistioti, N.: A Framework for the Deployment of Self-Managing and Self-
Configuring Components in Autonomic Environments. In: IEEE WoWMoM 2006 (2006) 

5. Vandewoude, Y., Berbers, Y.: Component state mapping for runtime evolution. In: Int. 
Workshop on Unanticipated Software Evolution, within PLC 2005, Las Vegas, NE (2005) 



Refinement of Component Model Standards

and Conventions

Hazleen Aris1 and Siti Salwah Salim2

1 Universiti Tenaga Nasional, 43009 Kajang, Malaysia
hazleen@uniten.edu.my

2 University of Malaya, 50630 Kuala Lumpur, Malaysia
salwa@um.edu.my

Abstract. One the research areas in component-oriented software de-
velopment is component model development. Various component models
have been defined and specified, but whether or not they meet the pur-
pose of a component model is still a subject of discussion. This paper
presents our effort in refining the standards and conventions of a com-
ponent model in order to produce components that meet their purpose.
Application of the refined standards and conventions to a selection of
component models is also presented.

Keywords: Component model, component model standards, component
model purpose.

1 Introduction

The success of component-oriented software development largely depends on
a clear definition and precise specifications of component model. According to
Wallnau et al. [1], to define what a component model is, one has to know the
purpose of a component model. Therefore, they have defined the purpose of a
component model to comprise the following:

– Uniform composition, where two components can interact iff they share
consistent assumptions about what each provides and requires of the other,

– Appropriate quality attributes of a system, which depend on its software
architecture and

– Deployment of components and applications where components can be
deployed from the developer environment into the composition environment
and later into the customer environment.

A set of standards and conventions (referred to as standards henceforth at a
number of places for readability) that need to be imposed on component devel-
opers to ensure the fulfillment of the above purpose is also defined. These are:

– Component types, which may be defined in terms of the interfaces imple-
mented by a component,

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 278–281, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Refinement of Component Model Standards and Conventions 279

– Interaction schemes, which specify how components are located, which
communication protocols are used and how qualities of service are achieved
and

– Resource binding, which binds a component to one or more resources.

These standards, however, are somewhat generic. Relying on these standards
alone will not be of much help to the component developers in making sure that
the components developed will achieve the stated purpose. Therefore, in this
paper, we describe our effort in refining the standards so that they can provide
more information in producing purposeful components. Section 2 describes our
approach in refining the standards. Section 3 explains the application of the re-
fined standard to selected component models and section 4 concludes the paper.

2 Refinement of Standards and Conventions

Based on the description of component model purpose and standards in section 1
and their detailed elaboration in [1], we can relate each standard to the purpose
that it can fulfill as shown in Fig. 1. Uniform composition of components can
be achieved when they share consistent assumptions about what each provides
and requires. Consistent assumptions are made possible when each component
declares its component types, defined in terms of the interfaces implemented.
Standardisation of the types of components used and their interaction schemes
ensures the fulfillment of desired quality attributes. Resource binding mecha-
nisms enable the deployment of components into the composition environment
to produce applications.

Component types

Interaction schemes

Resource binding

Uniform composition

Appropriate quality attributes

Deployment of components 
and applications

achieve

achieve

achieve

achieve

Fig. 1. Standards and conventions that achieve particular purpose of component model

Ȧkerholm and Fredriksson [2] map the three standards to component def-
inition, component interface and component composition respectively. In our
opinion, a better mapping for these three standards and conventions are compo-
nent interface, contract and component composition respectively, each of which
becomes the basis for the refinement of component model standards. Further-
more, our review on other research work on component models discovers that
most work indeed contain definitions on component interface, contract and com-
ponent composition as means to achieve the purpose of a component model,
albeit the terms used in describing them differ.

From the elaboration on the component interface, contract and composition
in [1], details about each of these three aspects of a component model can be ex-
tracted as shown in Fig. 2. Interface of a component is of two types; provides and



280 H. Aris and S.S. Salim

requires. Each type of interface should include not only the syntax, but also the
semantic for reasons stated in [3]. Contract can be futher divided into two types
of contracts, component-component (C-C) contract and component-framework
(C-F) contract. C-C contract defines component constraints through its precon-
dition, postcondition and invariant. C-F contract concerns with resource man-
agement issues like component lifecycle and protocol between component and its
composition framework. For component composition, two aspects can be further
looked into; binding mechanism and binding time. Binding mechanism should
cater for simple composition between components, deployment of components
in its framework and sub assembly of a child component into its parent compo-
nent. As for the binding time, two types of binding are possible; late and early
bindings where late binding is preferred for greater composition fexibility.

Interface

Contract

Composition

provides

requires

component-
component
component-
framework

binding mechanism

binding time

syntax
semantic
syntax
semantic

invariant
precondition
postcondition
lifecycle
protocol

simple composition
component deployment
component (sub) assembly
late
early

Fig. 2. Refinement of the interface, contract and composition of a component model

3 Application of the Refined Standards

The refined standards were applied to seven (7) research-based component mod-
els; SOFA [4], UML [5], CDL [6], Fractal [7], Visual Component [8], Cat One [9]
and Formal Model [10]. These component models were selected based on their
generic nature and sufficient written information. We did not apply the refined
standards to the industrial standard component models for the reason given
by [11].

Result of the application shows that the refined standards can be categorised
into two; well supported standards and less supported standards. Well supported
standards are the standards adhered to by all (or almost all) of the selected com-
ponent models. These are the interfaces’ syntax and semantic, contract’s invari-
ant, precondition and postcondition, simple composition and component (sub)
assembly. The rest of the refined standards are classified as less supported be-
cause the result shows that only a few (less than half) of the selected component
models include these standards in their specifications. These are component-
framework lifecycle and protocol, component deployment and binding time.

4 Conclusion

Even though component model standards exist, it is discovered that the existing
standards are too general and are not able to sufficiently guide component de-
velopers in producing component that meets its purpose. Therefore, this paper



Refinement of Component Model Standards and Conventions 281

describes our effort in refining the standards so that the purpose of component
model can be better materialised. It makes the standards more distinct in such
a way that they can be clearly compared to the description of each component
model. Result of the standards application shows that none of the selected com-
ponent models satisfy all the refined standards with some of the standards are
well supported by the component models while some others are less supported.
The refined standards can also be used in improving the existing component
models or in developing a new component model.

References

1. Wallnau, K., Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F.,
Robert, J., Seacord, R.: Technical Report on Volume II: Technical Concepts of
Component-Based Software Engineering. Software Engineering Institute. Carnegie
Mellon University, Pittsburgh (2000)

2. Ȧkerholm, M., Fredriksson, J.: Technical Report on A Sample of Component Tech-
nologies for Embedded Systems. Mälardalen Research and Technology Centre, De-
partment of Computer Science and Electronics Mälardalen University, Västerȧs
Sweden (2004)

3. Crnkovic, I., Hnich, B., Jonsson, T., Kiziltan, Z.: Basic Concepts in CBSE. In:
Crnkovic, I., Larsson, M. (eds.) Building Reliable Component-based Software Sys-
tems. Artech House, Inc., Norwood (2002)

4. Plášil, F., Bálek, D., Janeček, R.: SOFA/DCUP: Architecture for Component Trad-
ing and Dynamic Updating. In: Proceedings of the Fourth International Conference
on Configurable Distributed Systems, Annapolis, MA, pp. 43–51 (1998)

5. Cheesman, J., Daniels, J.: UML Components: A Simple Process for Specifying
Component-Based Software, 1st edn. Addison-Wesley Professional, Reading (2000)

6. Teschke, T., Ritter, J.: Towards a Foundation of Component-Oriented Software
Reference Models. In: Butler, G., Jarzabek, S. (eds.) GCSE 2000. LNCS, vol. 2177,
pp. 70–84. Springer, Heidelberg (2001)

7. Bruneton, E., Coupaye, E., Stefani, J.B.: Specification on the Fractal Component
Model. The Object Web Consortium. France Télécom S.A (2002-2003)

8. Kent, S., Howse, J., Lauder, A.: Modelling Software Components. In: Proceedings
of the 9th International Workshop on Database and Expert System Applications,
Vienna, pp. 789–200 (1998)

9. DSouza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML
The CatalysisSM Approach. Massachusetts. Addison Wesley Longman, Inc., Mas-
sachusetts (1998)

10. Cox, P.T., Song, B.: A Formal Model for Component-based Software. In: Pro-
ceedings of the IEEE Symposia. on Human-Centric Computing Languages and
Environments, Stresa, pp. 304–311 (2001)

11. Estublier, J., Favre, J.-M.: Component Models and Technology. In: Crnkovic, I.,
Larsson, M. (eds.) Building Reliable Component-based Software Systems. Artech
House, Inc., Norwood (2002)



Identifying and Improving Reusability Based on
Coupling Patterns

Andrea Capiluppi and Cornelia Boldyreff

Centre of Research on Open Source Software – CROSS
Department of Computing and Informatics, University of Lincoln

{acapiluppi,cboldyreff}@lincoln.ac.uk

Abstract. Open Source Software (OSS) communities have not yet taken full ad-
vantage of reuse mechanisms. Typically many OSS projects which share the same
application domain and topic, duplicate effort and code, without fully leveraging
the vast amounts of available code.

This study proposes the empirical evaluation of source code folders of OSS
projects in order to determine their actual internal reuse and their potential as
shareable, fine-grained and externally reusable software components by future
projects.

This paper empirically analyzes four OSS systems, identifies which compo-
nents (in the form of folders) are currently being reused internally and studies
their coupling characteristics. Stable components (i.e., those which act as ser-
vice providers rather than service consumers) are shown to be more likely to be
reusable. As a means of supporting replication of these successful instances of
OSS reuse, source folders with similar patterns are extracted from the studied
systems, and identified as externally reusable components.

1 Introduction

Reuse of software components is one of the biggest promises of software engineer-
ing [3]. Enhanced productivity, increased quality and improved business performance
are often pinpointed as the main benefits of developing software from a stock of reusable
building blocks [33].

Recently, practical approaches to commercial software reuse have included both in-
house and COTS-based approaches. Many companies have already successfully pro-
duced and reused in-house components, in the forms of documentation, system and
components design, source code, and so on, which are kept as valuable assets and not
made available elsewhere [25,29]. One of the most critical aspects of successful in-
house reuse is the long-term commitment of the management [30].

Reuse of small scale components, e.g. functions of programming language libraries,
either in-house or externally produced has been common practice since high level lan-
guages have been in use. A new possibility for reusability of external components has
arisen through the exploitation of both COTS and OSS in what can termed “whole
system reuse". New products can be developed based on existing systems, either on
a closed-source basis (e.g., commercially available COTS [31]), or by reusing entire
OSS systems, such as web-server Apache, the MySQL database management system,
or the PHP language [37]. In the latter case, OSS systems also provide the source code

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 282–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Identifying and Improving Reusability Based on Coupling Patterns 283

underlying the system, and the code can be modified before reuse. One of the draw-
backs of this approach is that entire systems are reused, even though only a subset of
their functionalities may be required in the new system. Commercial companies must
address these issues in order to take advantage of the proprietary-COTS shift: whether
to use COTS, how to use COTS, and what to modify in their in-house systems to cope
with COTS [10] and the same questions apply in the selection of OSS component reuse.

Although much attention has already been focused on the study of reusable COTS,
including OSS components in corporate software production, the reusability of software
“from” OSS projects “in” other OSS projects has only started to draw the attention
of researchers and practitioners in OSS communities [20]. While a huge amount of
code is daily created, modified and stored in OSS repositories, software reuse is rarely
perceived by OSS developers as a critical factor in their projects, nor is the source code
of other projects considered as a potential way to build new OSS systems upon existing
ones. For different and composite reasons [34], briefly recounted here in the following
Sections, several OSS projects typically address the same software need independently.
For example, a search for the “email client” topic on the SourceForge site will result
in more than 500 different projects being listed, each implementing some features of
the same topic. Duplication of coding effort therefore is currently producing similar
products with little sharing of the basic building blocks or the larger subsystems.

In order to address this missing “reuse” link in OSS projects, the objective of this
paper is to provide OSS communities with a technique for identifying and benefiting
from reusable components (under a “design with reuse” perspective [26]).

2 Definitions and Approach

The terminology and definitions used in this paper are extracted from similar
studies in the literature, for example, the definition of coupling (intended for both

Fig. 1. Couplings among folders in one of the releases of the Gaim system – Dashed lines repre-
sent hierarchical connections without involving couplings



284 A. Capiluppi and C. Boldyreff

object-oriented [1,21] and procedural [13] languages) and the notion of instability of
source packages [17]. In this section an overview of these terms is given, as they will
be used throughout this work.

– Source function: basic unit of source code; this term is used to refer to procedures,
subroutines, but also OO methods.

– Source file: any file with at least one source function.
– Source folder: any folder containing at least one source file [9]. The term module is

used to refer to source code functions, files and folders.
– Folder structure: from the perspective of file naming, code organization and stor-

age, this is the tree structure composed of elementary components (source files,
source folders). The root of the tree is represented by the parent folder [9,8].

– Extensibility of a source folder: following Martin [24] who defines extensibility as
the number of concrete and abstract classes in a package, we define the number of
source files contained in a folder as the extensibility of that folder. This attribute
serves to characterize the potential usefulness of a source folder. Ideally, one would
want to reuse folders with large extensibility, i.e., with a large number of similarly
scoped functionalities (in the forms of files or functions), rather than a number of
related smaller folders.

– Coupling: this is a measure of interconnection among modules in a software struc-
ture [33]. In this study, three types of coupling are extracted, based on the definitions
of common coupling [36]: these couplings were extracted via the Doxygen engine1,
and, albeit related, they represent different metrics for the links among modules.

i. The dependency relationship is based on source files, and describes, for each
file, how many and which other files are currently depending on it. After extract-
ing it, this type of coupling was transformed into a folder-to-folder relationship,
i.e. between the folders actually containing the files affected by the coupling.

ii. The include relationship is also based on source files, and describes the number
of external files that a specific source file includes in its declarations. Again, this
file-to-file coupling was upgraded to a folder-to-folder relationship, as above.

iii. The function call relationship is based on source functions, and describes the
relationship among functions or procedures. It produces as a result the repre-
sentation of calls within functions. This type of coupling was at first upgraded
to a file-to-file relationship, and then to a folder-to-folder relationship: this per-
mitted to have all the extracted couplings at the same level of granularity. The
result of the extraction and conversion of couplings to folder-to-folder relations
is exemplified in figure 1.

– The number of Afferent Couplings (Ca, or in-bound coupling) of a source folder
represents the sum of other source folders that depend on it, and it is an indicator of
the its responsibility. [17] used this metrics for OO languages and specifically for
packages. In the following, the focus is on source folders as packages of a system,
even if the system is written in procedural languages.

– The number of Efferent Couplings (Ce, or out-bound coupling) of a module repre-
sents how many other modules it depends on, and it is an indicator of the folder’s
independence [17].

1 Doxygen, http://www.stack.nl/~dimitri/doxygen/

http://www.stack.nl/~dimitri/doxygen/


Identifying and Improving Reusability Based on Coupling Patterns 285

– The Instability (I) of a module is the ratio of efferent coupling (Ce) to total cou-

pling (Ce + Ca) such that I = Ce
(Ca + Ce) . This metric is an indicator of the

folder’s resilience to change [17]. The range for this metric is 0 to 1, with I = 0
indicating the lowest instability for a folder and I = 1 indicating a completely un-
stable folder [17]. Since Ca and Ce are measured at the folder level, and couplings
among folders may greatly vary due to larger or smaller amount of calls, weighted
instability factors will be introduced below, termed wCa and wCe.

3 Case Studies – Evolutionary Analysis

The first part of this study has been performed over all the public releases of four large
OSS projects2, and is specifically targeted at understanding the structural relationships
among source folders. It was noted that both MPlayer and XMMS share the same func-
tionalities (playing and recording multimedia), yet they are developed by independent
teams of developers. The reasons discovered by past works [34] are enough for devel-
opers to start their own project and duplicate efforts. This means that the reuse of code
written by others has to overcome similar obstacles, apart from the technical ones [20].

In terms of activity and code released, it was observed that the Arla project spans
some 8 years of development, Gaim approximately 6.5 years, MPlayer 4.5, while
XMMS 5 years. In terms of productivity, a high frequency of releases was observed
in the Gaim and MPlayer projects (on average, more than one release per month), while
it was lower in the case of Arla (less than one per month). The XMMS case finally
shows that a new release has been available on average every two months. This gen-
eral productivity trend has had a repercussion on size achieved (in LOCs) and overall
number of source folders found in the latest observed release.

In terms of developers, it was observed that the MPlayer project was the most suc-
cessful in forming an OSS community providing code patches, new functionalities and
bug fixes (210 developers). A direct link between the community formed and the size
achieved was also detected in the overall size at the latest observed release: in the cases
of the 4 projects studied here, larger communities usually achieve larger systems, apart
from the Gaim case (25 developers, 235 kLOCs), where a smaller community has
achieved a larger system than those developed by other, larger communities (Arla –
with 83 developers, 215 kLOCs – and XMMS – 43 developers, 110 kLOCs).

From the reuse standpoint, it was noted that recurrent folders are successfully reused
across the selected OSS systems. The most notably folders are the following:

1. Libraries of the C language (libc): they provide generic functionalities, like the I/O
output (the module “stdio.h”), or the stub functions for socket communication (con-
tained in “socket.h”). In this work, all the connections involving calls to elements
of the generic libc libraries are, for simplicity, redirected to a generic “libc” folder.
Evaluating the instability of this folder, it was found that throughout the evolution

2 Arla http://www.stacken.kth.se/project/arla/, Gaim http://www.
pidgin.im, MPlayer http://www.mplayerhq.hu/ and XMMS http://www.
xmms.org/

http://www.stacken.kth.se/project/arla/
http://www.pidgin.im
http://www.pidgin.im
http://www.mplayerhq.hu/
http://www.xmms.org/
http://www.xmms.org/


286 A. Capiluppi and C. Boldyreff

of all the selected systems, this folder has a constant lowest instability (0): it does
not invoke any outside resources, and it just provides services.

2. Localization/international folder: the code contained in this specific subsystem
translates the messages, or the interfaces, of the application in the local language of
the user. OSS projects using code of this subsystem typically include it in a folder
named “intl”. The evolutionary behavior of the instability of this folder showed a
very low instability (between 0 and 0.2), which again denotes a provider of services,
rather than a consumer.

3.1 Source Folders as Reusable Units

Empirical findings demonstrated that object-oriented packages show four basic patterns
(“pure client”, “pure server”, “hybrid” and “silent”), based on whether they mostly
require, or are called by, other packages [23]. The present work expands these findings
in two ways:

1. It considers the folders of procedural languages as modules: when asked, the de-
velopers of the XMMS case study confirmed that source folders serve to them as
place-holders for “similar-scoped” source files3. The “wav” folder, for instance,
keeps all the source files for the wav audio file format.

2. It evaluates coupling among folders to build an instability index: folders with lowest
instability index are identified as candidates for reuse.

Considering the couplings within and outside of source folders, it was noted that
all the case studies (apart Arla), show recurring initial values. At least 80% of their
couplings are among elements of the same source folder, showing an applied ex-
ample of modularity [33]: considering only the “function calls” coupling, this value
increases to 90%. From an evolutionary standpoint, all the analyzed systems show
a growth in number of source folders, but a increasingly problematic coupling pat-
tern: the overall amount of couplings within folders decreases while the systems in-
crease in size. This recalls the results of architectural erosion mentioned in [27]; as
systems depart from its “initial architecture’s intent and conceptual integrity”, cou-
plings connect many other folders, and the whole architecture becomes much harder
to understand and maintain.

The Arla case is an outlier, and shows an intertwined system already from its initial
releases, where half of the couplings affect two or more source folders. From the defi-
nitions given above, this system is going to experience less reusable folders, since most
of the existing folders are already linked into a complex network of couplings.

This initial result shows that, on average, OSS developers actively use source folders
as containers of similar-scoped elements, and prefer linking elements in the same folder
rather than coupling different folders. However, this result should not be used to stati-
cally judge a software system; the Arla system is not inherently worse than the others
analyzed, but on average its source folders are more instable, as per the definition given.
Based on that, it is likely that selecting reusable folders from this system will be more
difficult.

3 Reported from conversations, email correspondence and private communication.



Identifying and Improving Reusability Based on Coupling Patterns 287

Table 1. Reusable folders detected via the coupling analysis: wCe refers to the product “Efferent
folders * Efferent calls”, while wCa refers to a similar product of afferent folders and calls

Folder I E wCe wCa Calls
to self

Calls
to libc

Description False
positive

Arla project – reusable folders
root/lib/ro-
ken

0.01 145 11*73 71*1326 395 367 Library handling missing or broken
parts

yes

root/rx 0.03 33 13*111 53*1042 495 141 Library implementing the rx proto-
col

no

Gaim project – reusable folders
root/src 0.030 139 12*1117 30*14462 9437 868 Common source files of the Gaim

system
yes

MPlayer project – reusable folders
root/liba52 0.02 23 2*21 9*230 196 15 ATSC A/52 stream decoder no
root/libav-
codec

0.03 154 22*155 27*4493 3780 168 Library for coding and decoding
video and audio streams

no

root/libaf 0.03 38 7*52 25*464 294 112 Audio filter layer library no
root/lib-
faad2

0.06 86 6*23 2*1063 1096 37 Decoding library for AAC formats no

root/libmp-
demux

0.06 136 21*257 28*2852 2740 353 Demultiplexer Library for MPEG,
ASF, AVI formats

no

root/tremor 0.045 29 4*17 4*363 372 34 Tremor integer-only Ogg Vorbis au-
dio codec

no

root/loader 0.054 27 8*203 24*1192 688 75 N/A yes
root/osdep 0.066 25 6*47 23*174 17 54 N/A yes
root/loader/
wine

0.138 27 5*142 14*318 83 11 Header files for the Microsoft Win-
dows compatibility

yes

XMMS project – reusable folders
root/lib-
xmms

0.003 19 4*20 25*1081 416 86 Generic library for the XMMS
project

no

root/xmms 0.091 87 20*277 26*2121 2157 121 Common source files of the XMMS
system

yes

3.2 Identifying Reusable Folders

In this section, the data gathered in the evolutionary exploration of the four case studies
is used to extract reusable folders. In particular, the coupling patterns of the “libc” and
the “Intl” folders will be looked for in other folders. Low values in the instabilities will
trigger the definition of reusability of the folder, and a preference will be given to folders
with larger extensibility. Tentatively, two thresholds were set: the joint combination of
an instability lower than 0.2, and an extensibility larger than 10, highlight a folder as
reusable. In table 1, a list of reusable folders per project is given, based on the instability
and extensibility thresholds. The table summarizes the following data:

1. Each project has a set of rows, pointing at reusable folders (second column) found
in that project. In each set, folders with a small instability (as per the threshold
given) and containing a larger amount of source files (i.e. higher extensibility, con-
forming to the tentative threshold) are preferred as potential reusable folders.



288 A. Capiluppi and C. Boldyreff

2. Efferent coupling has been evaluated via the product of the number of efferent fold-
ers and the number of total efferent calls. Afferent coupling (6th column) is given
by a similar product, but involving afferent folders and calls. Intra-folder calls are
summarized by the “Calls to self” column, while links to the “Libc” folder are
shown in the “Calls to libc” column. In many cases, the amount of calls within
source folders are larger than the amount of efferent calls, which confirms the low-
est instability of these folders.

3. A description of each folder (last column of table 1) has been extracted either from
the description files contained in the folder, or by browsing the documentation. This
task is of key importance in order to describe a folder to potential reuses, and it has
not been possible to automate this task.

3.3 Validation of the Predictors – Instability and Extensibility

As stated above, and considering the relatively few empirical studies focused on the
reuse of OSS components, the practice of reuse of OSS components is not widespread,
and it needs further investigation. The implemented algorithm selects folders which
are being actively reused by these systems (the “rx” folder, provided by IBM, reused
in the Arla system; the folder “tremor” in the MPlayer system, table 1). In terms of
validation of the proposed metrics as predictors of external reusability, the following
lists the approach used:

– Detecting reused folders: The list of reusable folders, as listed in table 1, has been
processed in a semi-automatic way, through various engines: the main SourceForge
site4, the Krugle code search engine5, and the FLOSSmole repository6 have been
searched against each of these folders. The SourceForge site has been searched
manually, browsing for the names of each folder, and analyzing whether new
projects exist as a spin-off from that folder, or if existing projects include the re-
quested folder; the Krugle engine has also been manually searched, and the existing
OSS projects that include the requested folder have been detected; the FLOSSMole
repository has been automatically searched for matching names of new projects
with the name of the requested folder.

– Detection of actual reuse: The folders found in any of the information sources
have been detected as such. No further analysis has been performed to check
whether their current coupling interaction, or their extensibility, has changed over-
time as in the original case studies.

Based on the approach above, it was found that some of the highlighted folders are
currently distributed as independent OSS projects: the “liba52” folder of MPlayer (7th
row of table 1, and the “libxmms” folder of XMMS (12th row of table 1) are currently
distributed as separate OSS systems.

In terms of “external” reusability [32], it was also found that some of the folders in
the MPlayer project are reused in various OSS projects:

4 http://sourceforge.net/
5 http://www.krugle.com/
6 http://ossmole.sourceforge.net/



Identifying and Improving Reusability Based on Coupling Patterns 289

– the “liba52” folder is currently reused by the “gst-ffmpeg” project;
– the “libavcodec” folder is currently reused by several other OSS projects (“gst-

ffmpeg”, “xmovie”, “quicktime4linux”, “mythtv” among others);
– the “libfaad2” folder is reused by the “audacious-plugins” project;
– the “libmpdemux” folder is reused by the “nmm” project.

The algorithm as illustrated above is subject to detecting false positives, i.e. targetting
folders as reusable but never reused. Based on the given thresholds (Instability <= 0.2;
Extensibility >= 10), the latest analyzed releases of the analyzed projects presented the
false positives listed in the last column of table 1. These false positives fit into two
main categories, the first contains those folders which currently represent most of the
functionalities of the system (e.g. the “root/src” folder in Gaim, and the “root/xmms” in
the XMMS system). These cases are typically large-grained components, and in terms
of reusability, they should be split into other components before being reusable. The
second category contains those other folders which present a reusability potential, but
currently are not reused: these false positives represent missed reuse opportunities.

4 Related Work

This work is related to various research areas: reuse of components, empirical studies
on software systems, graphic visualizations, software couplings, and software architec-
tures. Since this work is in a larger research context, related to the study of the evolution
of OSS systems, from which the case studies presented in this paper have been taken,
empirical studies of OSS are also relevant to this research. In the following Section, an
overview of the related works is presented, and consideration is given to determining
how this work expands upon the related work.

The research with the closest scope to the present work is presented in [20], where a
framework is proposed for the reuse of components in the OSS environment. It points
out some key aspects to consider carefully, and which could impede its implementation,
such as the license types, the ego-boosting problems or the programming languages;
these social aspects were previously stressed also in [34]. The technical aspects of in-
corporating external code are also mentioned, but no in-depth analysis is provided. The
present work studies some of the technical details of selecting reusable folders, but the
mentioned aspects are all key points which should be given consideration as well.

As mentioned above, many reuse research studies (and a set of specific conferences
on the topic of “Software Reuse”) have been devoted to developing techniques [22,37]
and frameworks for globally enhancing reuse [3], establishing state-of-the-art and crit-
ical aspects of reuse [25,30]. This present work has been conceived as having the OSS
development communities as its main recipients and beneficiaries in order that results
and techniques of this academic research can be fed back to the OSS communities and
advance the development of their systems.

This work is also related to the study of software architectures: previous works
([18,19,38]) have defined and used different views of architecture of a software sys-
tem. For example, [19] refers to a “4+1” view model to describe a system involving
logical, process, physical, development views, and user scenarios. This model defines
different perspectives for different stakeholders; the present work uses the concepts of



290 A. Capiluppi and C. Boldyreff

logical (“hierarchical”) and process (“coupling”) views to establish a comparison be-
tween them. Similarly, [18] defines four architectural views of software systems, which
in turn focus on coarser degrees of granularity (conceptual, or the abstract design level;
module, or the concrete design level; code, or components level; and execution level).
As stated above, the present research focuses on the views which are closer to the work
of software developers, as, for instance, the folder or the file level. In the selection of
attributes, the limit is on those that it is possible to derive from projects found in exist-
ing OSS repositories with a reasonable effort. Hierarchical (“abstract design level”) and
coupling (“component level”) views can both provide insight into how developers deal
with macro and micro-components of software systems, respectively.

Recently, it has been realized that empirical data for OSS systems is more widely
available than that for proprietary systems. A general distinction can be drawn among
these studies. In part, research studies are based “on” OSS systems “for” advancing
the Open Source Software Engineering body of knowledge; other studies access OSS
projects for generating boundary crossing conclusions on software systems in general.
Recent studies of the first kind include those examining single OSS projects [2,15,16]
[14,35], or those examining several OSS projects [6,7,28]. This work is intended as
a means to directly inform OSS developers of the availability of existing potentially
reusable folders upon which they can build new applications.

As previously reported, recent work [11,23] has been focused on OO package anal-
ysis, in order to characterize the roles of specific folders. This work is greatly inspired
by these research studies, and focuses the “source folder” as the fundamental unit in
a network of couplings. The advances presented in this paper are based on consider-
ing interaction coupling within procedural languages as the most representative in an
OSS context [7], on providing an evolutionary perspective of these interactions, and on
focusing the analysis on the reusability of folders based on their couplings.

Recent work on code couplings in OSS has been reported in [1,39], where the anal-
ysis used the definition of common and control coupling; two or more modules are
commonly coupled when they share a reference to the same variable. Our approach is
slightly different, since the source code (mostly C with some C++) is analyzed by con-
sidering three different couplings (dependency, and include coupling, and calls among
functions). We consider their relevance from the point of view of two different visual-
izations, in order to define a relationship between code coupling and what we define as
the folder structure of a software system at a given stage of its evolution.

5 Conclusions, Further Work and Threats to Validity

This paper has presented an approach to evaluating the source folders of a software
system as potentially reusable and shareable fine-grained components. The current state
of the art in terms of reusability are two-fold: the commercial internal reuse, which is
typically not shared, and the COTS approach, which reuses “black-box” components.

This paper focused its reuse approach on smaller components, the folders (or directo-
ries) of a software system. Building on the vast amount of OSS knowledge and the OSS
code base, specific source folders were observed as successfully reused across OSS
systems. An analysis of the coupling (i.e., the interactions among various other folders)



Identifying and Improving Reusability Based on Coupling Patterns 291

was carried out in order to characterize these specific folders based on patterns of in-
teraction. The approach described above had two objectives. The objective was to look
for similar coupling patterns in other folders in order to identify potential candidates for
reuse in other OSS projects, based on the coupling patterns observed.

The empirical results are based on literature definitions. It was found that success-
fully reused folders have a low instability index, i.e., they provide more services to
other folders than they ask for from other folders. In a service-based terminology, these
folders act mostly as servers for other folders. This coupling pattern was searched for
in other source folders, and a list of folders with a similar behavior was provided in
table 1: these folders represent potentially reusable components. In terms of external
reusability, the algorithm identified some source folders which are already being reused
in the OSS community as side projects of existing OSS systems.

Various areas are being evaluated as further work: a key aspect of this research is the
extraction of information to characterize the potentially reusable source folders; this
should be made automatic and non-invasive. Also, other types of coupling (dynamic
and data couplings, inheritance etc.) have been identified in previous works, and should
be considered to provide a more complete picture. Finally, it is planned to use a tooling
technique to bind and/or resolve external dependencies in order to explore whether even
modules with many dependencies could be highly reusable.

Several threats to validity have been identified: first, the usage of instability and ex-
tensibility alone could not be enough to categorize a source folder as reusable. Due to
transitive dependencies, developing a new module using others, it will automatically
becomes less reusable than the ones that were reused (because Ce increases), unless
it was manage to create many dependencies to the new module (such that Ca increase
as well). Second, only the dependency, inclusion and function calls couplings were
studied. Other types such as data coupling [5], or dynamic coupling, [1]), were not con-
sidered. Further works will enhance our analysis to consider these types and to examine
the use of other characteristics to determine reusability. Finally, other characteristics
determine whether a module should be reused in another system. Apart from those al-
ready cited by [20], there could be inherent reasons for not reusing a specific module,
even if its instability is low at the coupling level. It could be that it is too small, or that
it is very complex (in terms of cyclomatic complexity, for instance).

References

1. Arisholm, E., Briand, L.C., Foyen, A.: Dynamic Coupling Measurement for Object-Oriented
Software. IEEE Transactions on Software Engineering 30(8), 491–506 (2004)

2. Aoki, A., Hayashi, K., Kishida, K., Nakakoji, K., Nishinaka, Y., Reeves, B., Takashima, A.,
Yamamoto, Y.: A case study of the evolution of jun: an object-oriented open-source 3d multi-
media library. In: Proceedings of the 23rd International Conference on Software Engineering,
Toronto, Canada, ICSE, pp. 524–533 (2001)

3. Basili, V.R., Rombach, H.D.: Support for Comprehensive Reuse. IEEE Software Engineering
Journal 6(5), 303–316 (1991)

4. Beecher, K., Boldyreff, C., Capiluppi, A., Rank, S.: Evolutionary Success of Open Source
Software: an Investigation into Exogenous Drivers. In: Electronic Communications of the
EASST: ERCIM Symposium on Software Evolution, vol. 17(8) (2007)



292 A. Capiluppi and C. Boldyreff

5. Briand, L.C., Morasca, S., Basili, V.R.: Property-based Software Engineering Measurement.
IEEE Transactions on Software Engineering 22(1), 68–86 (1996)

6. Capiluppi, A.: Models for the Evolution of OS Projects. In: Proceedings of the International
Conference on Software Maintenance, Amsterdam, Netherlands, pp. 65–74 (2003)

7. Capiluppi, A., Lago, P., Morisio, M.: Evidences in the Evolution of OS Projects Through
Changelog Analyses. In: Proceedings of the 3rd Workshop on Open Source Software Engi-
neering, Portland, OR, USA, ICSE (2003)

8. Capiluppi, A., Morisio, M., Ramil, J.F.: Structural Analysis of Open Source Systems. In:
Madhavji, N.H., Ramil, J.F., Perry, D. (eds.) Software Evolution and Feedback: Theory and
Practice, pp. 207–222. Wiley, Chichester (2006)

9. Capiluppi, A., Morisio, M., Ramil, J.F.: The Evolution of Source Folder Structure in Actively
Evolved Open Source Systems. In: Proceedings of the 10th International Software Metrics
Symposium, pp. 2–13 (2004)

10. Carney, D.: Assembling Large Systems from COTS Components: Opportunities, Cautions,
and Complexities. Technical report, SEI Monographs on the Use of Commercial Software in
Government Systems (1997)

11. Ducasse, S., Lanza, M., Ponisio, L.: Butterflies: A visual Approach to Characterize Packages.
In: Proceedings of the 11th International Software Metrics Symposium (2005)

12. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz, Open Source
Graph Drawing Tools (2002)

13. Fenton, N.E., Pfleeger, S.L.: Software Metrics: a Practical and Rigorous Approach. Thomson
(1996)

14. Koch, S., Schneider, G.: Effort, Cooperation and Coordination in an Open Source Software
Project: GNOME. Information Systems Journal 12(1), 27–42 (2002)

15. German, D.M.: Using Software Trails to Reconstruct the Evolution of Software. Journal of
Software Maintenance and Evolution: Research and Practice 16(6), 367–384 (2004)

16. Godfrey, M.W., Tu, Q.: Evolution in Open Source Software: A Case Study. In: Proceedings
of the International Conference on Software Maintenance, San Jose, CA, USA, pp. 131–142
(2000)

17. Gorton, I., Zhu, L.: Tool Support for Just-In-Time Architecture Reconstruction and Evalua-
tion: an Experience Report. In: Proceedings of the 27th international conference on Software
engineering, pp. 514–523 (2005)

18. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley, Reading
(2000)

19. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Software 12(5), 88–93 (1995)
20. Lang, B., Abramatic, J.F., Gonzalez-Barahona, J.M., Gomez, P., Pedersen, M.K.: GI 1975.

In: Mühlbacher, J.R. (ed.) GI 1975. LNCS, vol. 34(12), p. 2. Springer, Heidelberg (1975)
21. Li, W., Henry, S.: Object-oriented Metrics that Predict Maintainability. Journal of Systems

and Software 23(2), 111–122 (1993)
22. Llorens, J., Fuentes, J., Astudillo, H.: Incremental Software Reuse. In: Proceedings of the

International Conference on Software Reuse, Torino, Italy, ICSR (2006)
23. Lungu, M., Lanza, M., Girba, T.: Package Patterns for Visual Architecture Recovery. In: Pro-

ceedings of the Conference on Software Maintenance and Reengineering, pp. 32–41 (2006)
24. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices. Prentice-Hall,

Englewood Cliffs (2002)
25. Matsumoto, Y.: Some Experience in Promoting Reusable Software Presentation in Higher

Abstraction Levels. IEEE Transactions on Software Engineering 12(1), 43–60 (2004)
26. McClure, C.: Software Reuse Techniques. Prentice-Hall, Englewood Cliffs (1997)
27. Medvidovic, N., Jakobac, V.: Using Software Evolution to Focus Architectural Recovery.

Automated Software Engineering 13(2), 225–256 (2006)



Identifying and Improving Reusability Based on Coupling Patterns 293

28. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two Case Studies of Open Source Software De-
velopment: Apache and Mozilla. ACM Transactions on Software Engineering and Method-
ology 11(3), 309–346 (2002)

29. Mohagheghi, P., Conradi, R.: Different Aspects of Product Family Adoption. In: Proceedings
of 5th International Workshop on Product Family Evolution, pp. 429–434 (2003)

30. Morisio, M., Ezran, M., Tully, C.: Success and Failure Factors in Software Reuse. IEEE
Transactions on Software Engineering 28(4), 340–357 (2002)

31. Morisio, M., Seaman, C.B., Parra, A.T., Basili, V.R., Kraft, S.E., Condon, S.E.: Investigat-
ing and Improving a COTS-based Software Development. In: Proceedings of International
Conference on Software Engineering, pp. 32–41 (2000)

32. Poulin, J.S.: Measuring Software Reuse: Principles, Practices, and Economic Models.
Addison-Wesley Longman Publishing Co., Inc., Boston (1996)

33. Pressman, R.S.: Software Engineering: a Practitioner’s Approach, 2nd edn. McGraw-Hill,
Inc., New York (1986)

34. Senyard, A., Michlmayr, M.: How to Have a Successful Free Software Project. In: Proceed-
ings of the 11th Asia-Pacific Software Engineering Conference, Busan, Korea, pp. 84–91.
IEEE Computer Society, Los Alamitos (2004)

35. Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.L.: Code Quality Analysis in Open-
Source Software Development. Information Systems Journal 12(1), 43–60 (2002)

36. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured Design. IBM Systems Journal 13,
115–139 (1974)

37. Torchiano, M., Morisio, M.: Overlooked Aspects of COTS-based Development. IEEE Soft-
ware 21(2), 88–93 (2004)

38. Tu, Q., Godfrey, W.M.: The Build-Time Software Architecture View. In: Proceedings of
2001 International Conference on Software Maintenance, Florence, Italy, pp. 65–74. IEEE,
Los Alamitos (2001)

39. Yu, L., Schach, S.R., Chen, K., Offutt, J.: Categorization of Common Coupling and Its Ap-
plication to the Maintainability of the Linux Kernel. IEEE Transactions on Software Engi-
neering 30(10), 43–60 (2004)



Conquering Fine-Grained Blends

of Design Patterns

L. Sabatucci1, A. Garcia2, N. Cacho2, M. Cossentino3, and S. Gaglio1

1 Dip. Ingegneria Informatica, University of Palermo, Italy
sabatucci@csai.unipa.it, gaglio@unipa.it

2 Computing Departement, Lancaster University, United Kingdom
{a.garcia,n.cacho}@lancaster.ac.uk

3 ICAR-CNR, Consiglio Nazionale delle Ricerche, Palermo, Italy
cossentino@pa.icar.cnr.it

Abstract. The reuse of design patterns in realistic software systems
is often a result of blending multiple pattern elements together rather
than instantiating them in an isolated manner. The explicit description
of pattern compositions is the key for (i) documenting the structure and
the behavior of blended patterns and, (ii) more importantly, supporting
the reuse of composite patterns across different software projects. In this
context, this paper proposes a fine-grained composition language for de-
scribing varying blends of design patterns based on their structural and
behavioural semantics. The reusability and expressiveness of the pro-
posed language are assessed through its application to 32 compositions
of GoF patterns recurrently appearing in three different case studies: the
OpenOrb middleware, the JHotDraw and JUnit frameworks.

1 Introduction

Even though design patterns have been widely accepted by industrial and aca-
demic organizations, their definition and reuse still impose deep concerns on
contemporary software engineers. The pivotal difficulty stems from the fact that
pattern solutions are largely sensitive to different contexts where they are reused,
especially on how they are combined with each other [1, 5]. Patterns often need
to be documented as pair-wise blends of patterns’ responsibilities rather than
as individual and intact entities [2, 15]. This phenomenon has been recurrently
identified in the design of product lines [8], middleware systems [6], and domain-
specific frameworks [7].

Effective reuse of composite patterns is far from being trivial for several rea-
sons. The symbiotic application of design patterns results in the intricate twine of
pattern participants and the target application [13]. Pattern composites usually
entail significant morphs of the original pattern solutions through the conjunc-
tion or merge of structural and behavioral elements. They should be systemat-
ically documented so that they can be unambiguously instantiated, traced and
reused within and across software projects. The lack of explicit documentation
for recurring compound patterns leads to design rationale being irrecoverable [3].

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 294–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Conquering Fine-Grained Blends of Design Patterns 295

In fact, pattern composition support has been recognized to be a key element
for the usability of pattern languages and underlying development tools [4].

However, after twelve years the Gang-of-Four (GoF) pattern catalogue [11]
has been published, effective support for documenting recurring composite pat-
terns is still lacking. One of the main gaps is that pattern composition has been
restricted to coarse-grained documentation approaches [19,22] which do not ad-
dress structural and behavioural blends of inner participant members [13]. Even
though contemporary programming techniques, such as aspect-oriented pro-
gramming [16] and subject-oriented programming [18], have brought advanced
mechanisms for enabling improved pattern composability [14], empirical evidence
shows that they do not scale much for coping with modular treatment of pattern
composites [7, 12].

In this context, the contribution of this paper is twofold. First, a design ap-
proach is proposed for addressing varying forms of pattern blends (Section 2).
We define a design language for describing fine-grained pattern compositions
based on their structural and behavioral semantics. An expressive and simple
set of operators is used for unifying, conjoining, concealing and externalizing pat-
tern elements (Section 3). Second, the proposed approach is assessed through its
application to different open source applications, the OpenOrb middleware, and
the JHotDraw and JUnit frameworks (Section 4). Our analysis is based on the
reuse and expressiveness evaluation of 32 GoF pattern compositions. We also
discuss the novel features of our technique on the light of a comparison with
existing work (Section 5). Some concluding remarks are reported in Section 6.

2 Defining Composable Patterns with POLaR

This section introduces POLaR (Pattern Ontology Language for Reuse), a de-
sign language for describing fine-grained pattern compositions based on their
structural and behavioral semantics. The language encompass several phases of
pattern reuse that are discussed in details in [20]. This paper is mainly focused
on the operators that are provided for different categories of pattern blends
(Section 2.1). In order to clearly illustrate these operators pattern definition
constituents are discussed in Section 2.2.

2.1 Case Study: A Reflective Middleware

Figure 1 shows a design slice of an OpenOrb-compliant reflective middleware
system [7] in which 21 classical design patterns [11] are used and combined to
achieve the middleware requirements of customizability and adaptability [6]. A
number of methods and attributes were omitted for simplification reasons. In
Figure 1, each number represents a specific pattern, and these numbers are as-
sociated with methods and attributes in the ContreteBind class. The goal is to
illustrate how various pattern realizations affect internal members of a single
class. The attachment of a number implies that the respective method or at-
tribute is part of the implementation of the corresponding pattern.



296 L. Sabatucci et al.

Fig. 1. Design slice of the OpenOrb middleware

For instance, the implementation of the Mediator pattern (represented by
number 1) includes: (i) all methods defined in the Port, BindMediator, Interface

classes and (ii) the attribute nextHandler and the method makeRequest in the class
ContreteBind. As a result, a single pattern is blended with other four patterns
(Figure 1): State, Strategy, and two instances of Proxy. Figure 1 is a mere
representative example of the difficulty in understanding and reusing pattern
compositions in realistic scenarios.

Pattern blends can be classified in two conservative and overlapping blends.
A conservative combination maintains separate involved patterns by creating
loose relationships among the elements. Pattern overlapping occurs when pattern
elements are merged in a unifying structure. For instance, Figure 1 shows that
the combination of Proxy(5) and Mediator(1) is conservative since it preserves an
intact core structure of both the patterns, whereas the combination of Proxy(4)
and Mediator(1) is an overlapping composition.

2.2 Static and Dynamic Pattern Constituents

The POLaR language is based on a set of constituents that can be combined
in order to define the structure and the behavior of the pattern solution. The
language syntax combines: (i) elements used to define the pattern, (ii) elements
of the programming language for implementing the solution and (iii) elements of
the system under development. We consider useful to introduce the definitions
of these elements.

Pattern Description Element (PDE). Atomic constituent of patterns that
describe the structure or the behavior of the solution. PSEs are: (i) partici-
pants, (ii) collaborators, (iii) events and (iv) actions.

Language Element (LE). Element of the programming language that is used
for implementing the pattern. For example, Java includes: classes, attributes,
methods, constructors, interfaces and the like.

Affected System Element (ASE). Element of the system that is influenced
by the pattern application. A typical example of ASE is a business class that
is assigned to a participant of the pattern.



Conquering Fine-Grained Blends of Design Patterns 297

(a)

Mediator

Mediator
Inteface

Colleague1

Colleague
Inteface

Colleague2

(b)

mediator colleague

mediation

mediator
interf

colleague
interf

mediator
ref

extends

contains
has type

extends

contains

contains

collaborator participant

(c)

1 pattern Mediator {
2 participant mediator i s Class [ 1 ] ;
3 participant c o l l e a gu e i s Class [ 1 . . ∗ ] ;
4 participant mediat ion i s Method [ 1 ] ;
5

6 event r eque s t med ia t i on from c o l l e a gu e ;
7 action operate med ia t ion by mediat ion ;
8 on r eque s t med ia t i on do operate med ia t ion ;
9

10 collaborator med i a t o r i n t e r f i s Class ;
11 collaborator c o l l e a g u e i n t e r f i s Class ;
12 collaborator med i a t o r i n t e r f . mediat ion op i s mediat ion ;
13 <mediator >. extends = med i a t o r i n t e r f ;
14 collaborator mediator . mediat ion op i s mediat ion ;
15 <co l l eague >. extends = c o l l e a g u e i n t e r f ;
16 collaborator <co l l eague >. med i a t o r r e f i s Attr ibute ;
17 <co l l eague >. med i a t o r r e f . type = med i a t o r i n t e r f ;
18 }

Fig. 2. Formalization of the Mediator pattern. (a) The classical structure from [11]. (b)
A slice of code used to describe the solution. (c) pattern semantic description diagram.

The definition of patterns encompasses alternant levels of stability: some
PDEs (Pattern Description Elements) are precisely described and do not re-
quire further details through the pattern instantiation, whereas some others are
sketched and their concrete definition is delayed to the pattern instantiation
phase. The latter means that the structure and behaviour of those pattern ele-
ments are volatile and their final definition depends on the application context
and the other patterns to which they are going to be composed.

The description of the static structure comprises two PDEs: participant and
collaborator. Both of them are used to assign responsibilities. The main differ-
ence is that a collaborator is a concrete element that will be added to the system,
whereas a participant is only a placeholder for an ASE (Affected System Ele-
ment). Both a participant and a collaborator own a type, which refers to a LE
(Language Element).

Along this section the Mediator pattern [11] (Fig 2.a) is used to illustrate
the pattern description language. The Mediator pattern description (Fig 2.b,
lines 2-4) includes the colleague, the mediator classes and the mediation method as
participants. Therefore, differently from role model approach, not only classes
can be defined as participants: at line 4 in Fig 2.b, a participant method is
defined. The type of a participant indicates what kind of ASE can be assigned to
the participant. For instance the Interface class can be a colleague, the ConcreteBind

class can be the mediator and the makeRequest method can realize the mediation.
Participants are also marked with multiplicities (at the end of each expression)
that are constraints for the number of ASEs allowed. In the example only one
mediator and one mediation are allowed, whereas many colleagues may exist.

Several collaborators are part of the Mediator pattern (Fig 2.b, lines 10-12,
14 and 16). For example, the colleague interf and the mediator interf are two classes
of the mediator structure that do not depend on the specific application context.
During the pattern instantiation phase all the collaborator elements become
elements of the system.

Fig 2.c shows the structure of the Mediator pattern solution as a typed graph.
It is an UML class diagram where a graphical stereotype notation is used in



298 L. Sabatucci et al.

order to obtain a concise description. Participants are shown by using ovals,
whereas collaborators are shown by using boxes. Static relationships are used to
connect these elements, thereby creating a graph. The diagram focuses on the
relationships among participants and collaborators underlining the semantics
that is behind the pattern and it is particularly useful in order to illustrate
pattern blends in next section.

The description of the behavior of a pattern comprises two PDEs: events and
actions. Their use allows for the behavioral description of the pattern semantics.
An event encapsulates an abstract circumstance that is the cause of triggering
a specific behavior, involving one or more static elements. The Mediator pat-
tern description (Fig 2, line 6) includes an example of event definition. The
request mediation is an event that can be originated by a colleague. This event
expresses the need of a colleague to communicate with another colleague.

An action encapsulates what happens when an event occurs. Actions are re-
lated to events by using cause-effect relationships. The Mediator pattern
(Fig 2.b) the operate mediation action is defined at line 7 and it is connected
to the request mediation event at line 8. Actions, as well as events, are abstract
elements that require to be detailed in the pattern instantiation phase.

3 Operators for Pattern Composition

This section presents the operators for pattern composition based on the fine-
grained pattern elements (Section 2). In general terms, the composition process
between a couple of patterns P1 and P2 creates a new pattern P3 that contains
all the PDEs of P1 and P2. Fig 3.c shows the result of the composition, before
the use of any operators.

mediator

colleague

mediation

mediator
interf

colleague
interf

mediator
ref

extends

contains

has type

extends

contains

contains

real
subject

proxyrequest

subject

subject
ref

contains

has typeextends

contains

contains extends

contains

(a)

(b)

(c)

collaborator participant

1 pattern MediatedProxy composes Mediator , Proxy {
2 participant r e a l c o l l e a g u e unif ies r e a l s u b j e c t with c o l l e a gu e ;
3 participant proxy unif ies proxy with c o l l e a gu e ;
4 collaborator sub j e c t unif ies c o l l e a g u e i n t e r f with sub j e c t ;
5 event r eque s t unif ies proxy reques t with r eque s t med ia t i on ;
6 participant med i a t o r i n t e r f a c e externalizes med i a t o r i n t e r f ;
7 }
1 pattern ProxyMediat ionPol icy composes Mediator , Proxy {
2 collaborator proxy mediat ion conjoins mediator with proxy ;
3 event r eque s t conjoins r eque s t med ia t i on with proxy reques t ;
4 collaborator d e f a u l t r e q u e s t conceals r eque s t ;
5 }

Fig. 3. Two compositions between Mediator and Proxy. (a) Code for the Mediated-
Proxy. (b) Code for the ProxyMediationPolicy. (c) Composition diagram.



Conquering Fine-Grained Blends of Design Patterns 299

Along all this section we use two examples of composition between the Media-
tor and the Proxy patterns: the MediatedProxy and the ProxyMediationPolicy.

Figure 1 presents the MediatedProxy pattern obtained as a composition of
Proxy(4) and Mediator(1), that is used to implement the connection between
the proxy and the real subject participants of the Proxy pattern. This is useful
when in order to implement a flexible mechanism to define how proxy and real
subject interact, thus avoiding the direct invocation. The Mediator pattern fits
this requirement by assigning the responsibility of coordinating a set of colleagues

to the mediator. Therefore, this blending requires the unification of some respon-
sibilities of the two patterns: the proxy and real subject participants must also
be colleagues that refer to the same mediator.

The ProxyMediationPolicy pattern, is a composition of Proxy(5) and Media-
tor(1), (Figure 1). that uses a different approach in order to realize the coordina-
tion process encapsulated in the mediator participant. Here the mediator object
(ConcreteBind) needs a RemoteTarget within its mediation process; these two ob-
jects are separated by using a Proxy pattern. The mediator participant only
requires a reference to the proxy object thus the structure of the resulting pat-
tern maintains unchanged both the Mediator and the Proxy original structures.

3.1 Static Pattern Blending

The static operators can be used in order to modify the structure of the pattern
solution, represented by a graph in the static description diagram.

Static Unification. The unification operator is used to express overlapping
compositions producing strong changes in the resulting pattern: the elements
that are unified represent the pivot points for the overlap. The unification can
be applied to two operands that must refer to the same PLE and the same LE.
The new element will receive all the features of its originators, and these will no
more be present in the structure.

Figure 4.a/b show two unifications of participants. The effect is the creation
of two new participants, RealColleague and Proxy that get all the relationships
that their originators prescribed in the original pattern description. The aim of
these two unifications is to create a pattern with the characteristics of the Proxy
pattern, where both the proxy and realsubject participants are also colleagues of a
Mediator structure, so they can communicate by using a mediator.

When the unification is applied to two participants, the new participant has
a multiplicity that is the intersection of the two original’s ones. For instance the
unification of a participant with multiplicity [0,2] with a participant [1,*] gener-
ates a participant [1,2]. Operations in Figure 4.a/b generate a composition prob-
lem when the pattern implementation target is an object-oriented programming
language (even though it is easily realisable with aspect-oriented languages). Af-
ter the unification, both the RealColleague and the Proxy are involved in a multiple
inheritance. Therefore, the unification of the colleague interf collaborator with the
subject collaborator solves this problem. The effect of this operation is shown in
Figure 4.c and the final structure of the MediatedProxy is shown in Figure 4.d.



300 L. Sabatucci et al.

proxy unifies colleague with proxy

realcolleague unifies colleague with realsubject

real
subject

requestsubject

extends contains

colleague

colleague
interf

extends

real
colleague

requestsubject

extends contains

colleague
interf

extends

realcolleague unifies colleague with realsubject

Unification

real
colleague

subject

extends

colleague
interf

extends

Unification

mediator
ref

contains

proxy

extends

real
colleague

subject

extends

mediator
ref

contains

proxy

extends

colleague

colleague
interf

extends

proxy

request

subject

subject
refcontains

contains

extends contains

Unification

colleague
interf

extends

proxy

request
subject

subject
refcontains

contains

extends contains

collaborator participant

(a)

(b)

(c)

MediatedProxy

mediator

mediation

mediator
interf

mediator
ref contains

has type

extends

contains contains

proxy

request

subject
ref

contains
has type

extends

contains
contains

extends

contains

(d)

real
colleague

subject

extends

Fig. 4. Effects of the static unification in the MediatedProxy pattern. (a-b) Unification
of participants. (c) Unification of collaborators. (d) Final structure for the Mediated-
Proxy after the use of the operators.

Static Conjunction. The conjunction supports a conservative pattern blend-
ing. Only marginal changes are visible to the structure of the involved patterns,
promoting the traceability of the involved PDEs. The operands continue to exist
after the operation. The visible effect is the creation of a new element that is
responsible for connecting the two ones in order to realize their collaboration.
The language does not put any constraints on the nature of the two operands
that is possible to conjoin. They can be indifferently participants or collabora-
tors but syntactic rules of the programming language must be kept. Fo instance
it is possible to conjoin a class with an attribute (it becomes an attribute of the
class), but it is not possible to conjoin a method with an attribute.

Figure 5 illustrates the composition ProxyMediationPolicy that creates a syn-
ergy between the two patterns. This is obtained by conjoining the mediator with
the proxy participants. The operator introduces a proxy ref attribute in the media-

tor class, that refers to a proxy object. The new pattern has all the characteristics
of a Mediator, which uses the Proxy inside the mediation process.

Externalization and Concealing. These two unary operators are conceived in
order to modify the nature of collaborators and participants. The externalization
is applicable only to a collaborator, changing it to a participant of the pattern.
After this operation, ASEs can be assigned to the new participant. The twofold



Conquering Fine-Grained Blends of Design Patterns 301

proxy_ref conjoins mediator with proxy

collaborator participant

mediator

mediation

mediator
interf

extends

contains

contains proxy

subject

extends

Conjunction

mediator

mediation

mediator
interf

extends

contains
contains

proxy

subject

extends

proxy
ref

contains

has type

ProxyMediationPolicy

mediator

colleague

mediation

mediator
interf

colleague
interf

mediator
ref

extends

contains

has type

extends

contains

contains

real
subject

proxy

request

subject

subject
ref

contains

has typeextends

contains

contains

extends
contains

(b)

proxy
ref has typecontains

(a)

Fig. 5. Effects of the static conjunction in the ProxyMediationPolicy pattern. (a) Con-
junction of participants. (b) Final structure for the pattern after the use of the operator.

default_request conceals request

proxy

request subject
contains

extendscontains

(b)

proxy
ref has type

externalization

proxy

default
request

subject
contains

extends
contains

proxy
ref has type

collaborator participant

mediator_interface externalize mediator_interf

mediator

mediation

mediator
interf

mediator
ref

type

extends

contains contains

(a)

promotion
mediator

mediation

mediator
interface

mediator
ref

type

extends

contains contains

Fig. 6. (a) Effect of the externalization of a participant in the MediatedProxy. (b)
Effect of the concealing of a collaborator in the ProxyMediationPolicy.

goal of externalization is to (i) allow for the unification of a collaborator with a
participant, and (ii) delegate some responsibilities (originally delineated inside
the pattern) to ASEs. An example of externalization is shown in Figure 6.a,
where the operator is applied to the mediator interf collaborator. The result is the
creation of a new participant, named mediator interface replacing the collaborator.

The concealing operator modifies the nature of a participant delegating its
responsibilities to a collaborator of the structure. After the transformation, it
becomes a fixed element of the structure and it does not requires further detail-
ing, in the instantiation phase. The aims of concealing are to: (i) allow unification
between a participant with a collaborator, and (ii) specialize the pattern, setting
some responsibilities. An example of concealing is shown in Figure 6.b, where
the operator is applied to the request participant with the introduction of a de-

fault request collaborator. The latter is a method containing a standard code for
executing the proxy request by the mediator.



302 L. Sabatucci et al.

colleague

request unifies proxy_request with request_mediation

request
mediation

mediator proxy

proxy
request

realsubject proxy

request

mediator realsubject

operate
mediation

delegate
operate

mediation

delegate
mediator

colleague
request concatenates request_mediation with proxy_request

request
mediation

mediator proxy

proxy
request

realsubject proxy

request

mediator realsubject

operate
mediation

delegate operate
mediation delegate

(b)

(a)

Fig. 7. (a) Effect of the event unification in the MediatedProxy pattern. (b) Effect of
the event conjunction in the ProxyMediationPolicy pattern.

3.2 Dynamic Pattern Blending

Dynamic composition operators complete the language for pattern blends. Only
two operators are contained in this category, the unification and the conjunction.
Both of them work on pattern events, and as consequence, on their associated
actions.

Event Unification. As already illustrated in Section 2, pattern description
defines events and actions as expressions of the pattern behavior. The effect of
unifying two events is the creation of a new event in the pattern, whereas the
two original ones do not exist anymore. The new event is responsible to trigger
all the events of its originators. This operation, therefore, produces a blend of
the flows of actions related to the two involved patterns. After this blending,
new actions can be added to the flow of events, and the order of execution of
the existing ones can be rearranged according to new needs.

Figure 7.a shows an unification of events related to the MediatedProxy pat-
tern: the request mediation is unified with the proxy request. The new pattern uses
the Mediator logic to allow the communication between the proxy and the real-

subject of the Proxy pattern. Therefore the delegate action is executed by using
the operate mediation. After the unification a new event request is the trigger for
these actions.

Event Conjunction. As for the unification, the effect of the conjunction of two
events is the creation of a new event in the pattern, whereas the two original
ones do not exist anymore. The difference is that this operation maintains the
flows of actions unchanged, treating them as atomic blocks of behavior. The
new event is responsible to trigger the first flow of actions. The execution of the
second flow of actions is triggered after the end of execution of the first one.

In Fig 7.b a conjunction of events (for the the ProxyMediationPolicy pat-
tern) is shown: the request mediation is concatenated to the proxy request since
the mediation algorithm of the Mediator uses a remote invocation encapsulated
in the Proxy. Therefore the delegate action is executed as a consequence of the
execution of the operate mediation.



Conquering Fine-Grained Blends of Design Patterns 303

4 Evaluation and Lessons Learned

This section discusses some qualitative results obtained by the application of our
pattern composition language to the three different case studies: OpenOrb [7],
JHotDraw [9] and JUnit [10]. We have chosen these applications because they
are from heterogeneous application domains and, as a result, the feasibility of
our language constructs and composition operators can be assessed in different
contexts. OpenOrb was already introduced and discussed in Section 2. JHotDraw
is an open-source software conceived for drawing 2D graphics. It was built with
a massive use of design patterns as exercise for demonstrating the reuse pro-
cess. JUnit is an open source testing software written in Java. It encompasses
a pattern-oriented framework design with variabilities for the organization of
software tests and testing graphical interfaces.

The activities for the assessment of the language are: (i) analysis of the pat-
terns and their blends from the three target systems; (ii) for each couple of
interacting patterns we have analyzed motivations of their collaboration; and,
(iii) we have analyzed how to aggregate responsibilities of these patterns by using
our operators. Due to space constraints we can not report complete results of the
assessment here, but we give some indications about the language expressiveness
and pattern composition reusability. We have been able to represent 20 patterns
from the GoF’s catalogue and to combine them by using 30 pair-wise composi-
tions, and 2 compositions involving more than two patterns. Finally we have in-
stantiated 62 patterns (some of them more than once) in the OpenOrb case study.

We have observed that the expressiveness of our pattern blending language is
widelyrelatedtothefine-grainednatureofthecompositionoperators (Section3). In
fact, the operators covered all the pattern compositions emerging in our three case
studies,withsomeexceptionalcases, for instance, intheChainofResponsibilityand
Facade patterns.Theproblem in representing theChainofResponsibility is related
to the implicit relationshipamong theparticipantspredecessorand successor. In in-
stantiation phase, apart to assign the classes to these participants, it is necessary to
specify the order of these classes in the chain. We are getting around this limitation
by instantiating the pattern more than once, every time with only one predecessor
and one successor. Therefore, we are also studying a way to delay the definition of
some elements of the pattern in order to better handle these intricate scenarios.

We have also analyzed to what extent each pattern composition has been reused
across the three case studies. The evidence of composition reusewas especially high
thanks to the fact the analyzed case studies are from very different domains. The
result of this experiment is that 13 over 32 pattern compositions have been reused in
more thanonecase study.Twoof thesecombinations,namely (Adapter+Command
and Command+Composite), have been reused in all the three applications.

5 Related Work

Different approaches have been proposed for documenting pattern blends: role
composition [19, 13], UML-based composition [22], temporal logic composition
[17] and aspect-oriented composition [21, 6].



304 L. Sabatucci et al.

In [19] role diagrams are used for implementing and documenting object col-
laboration patterns. These roles are sensibly different from our participants,
since only classes can play roles in these patterns, whereas every entity can
be a participant (including methods and attributes). In [22] an UML approach
for composing patterns is proposed. The main limitations of this work are: (i)
this approach is suitable only for OO languages, and (ii) the UML approach is
mainly focused on the static composition, whereas dynamic composition are not
considered. Mikkonen [17] proposes a formal approach for composing patterns,
which focuses on cooperation of behavioral layers. Their composition is based
on one operator only: the multiple inheritance. The limitation is twofold: (i) the
verbosity and heavyweight precision it requires in defining and combining the
pattern elements, and (ii) multiple inheritance is considered difficult to handle in
realistic contexts. In [21] a generic composition technique for merging dynamic
structures is proposed that is based on state charts. The process considers the
diagram meta-model in order to build a graph, to which it is possible to apply
several transformations.

6 Conclusion and Future Work

This paper presented an innovative composition technique for describing blends
of design patterns, based on their own static and dynamic semantics. The lan-
guage has been conceived for dealing with heterogeneous pattern compositions,
presenting a set of operators to manage different pattern blending styles. The
peculiarity of the approach is the fine-grained level chosen for fronting with the
composition of pattern elements in the resulting composite patterns. We have
applied our approach in three real-life case studies, obtaining encouraging results
in terms of reusability and expressiveness. Future work includes the refinement of
a visual notation for representing the composition, and concluding our ongoing
tool implementation for the pattern composition process.

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Center for Envi-
ronmental Structure Series, vol. 2. Oxford University Press, New York (1977)

2. Basit, H.A., Jarzabek, S.: Detecting higher-level similarity patterns in programs.
SIGSOFT Softw. Eng. Notes 30(5), 156–165 (2005)

3. Bosch, J.: Specifying frameworks and design patterns as architectural fragments.
In: Proceedings of TOOLS 1998, p. 268. IEEE Computer Society, Los Alamitos
(1998)

4. Budinsky, F.J., Finnie, M.A., Vlissides, J.M., Yu, P.S.: Automatic code generation
from design patterns. IBM Syst. J. 35(2), 151–171 (1996)

5. Buschmann, F., Meunier, R.: A System of Patterns. ACM Press, Addison-Wesley
Pub. Co., New York (1995)

6. Cacho, N., Batista, T., Garcia, A., Sant’Anna, C., Blair, G.: Improving modularity
of reflective middleware with aspect-oriented programming. In: Proceedings of SEM
2006, pp. 31–38. ACM Press, New York (2006)



Conquering Fine-Grained Blends of Design Patterns 305

7. Cacho, N., Sant’Anna, C., Figueiredo, E., Garcia, A., Batista, T., Lucena, C.:
Composing design patterns: a scalability study of aspect-oriented programming.
In: Proceedings of AOSD 2006, pp. 109–121. ACM Press, New York (2006)

8. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2002)

9. Gamma, E.: JHotDraw, HTTP (1998), http://www.jhotdraw.org/
10. Gamma, E., Beck, K.: JUnit, http://www.junit.org
11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements od

Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries. Addison-Wesley Publishing Company, New York (1995)

12. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A.:
Modularizing design patterns with aspects: a quantitative study. In: Proceedings
of AOSD 2005, pp. 3–14. ACM Press, New York (2005)

13. Hammouda, I., Koskimies, K.: An approach for structural pattern composition. In:
Proceedings of SC 2007, Braga, Portugal (March 2007)

14. Hannemann, J., Kiczales, G.: Design pattern implementation in java and aspectj.
In: Proceedings of OOPSLA 2002, pp. 161–173. ACM Press, New York (2002)

15. Izurieta, C., Bieman, J.M.: How software designs decay: A pilot study of pattern
evolution. In: 11th International Symposium on Empirical Software Engineering
and Measurement, 2007 (ESEM), September 21,(2007)

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241. Springer, Heidelberg (1997)

17. Mikkonen, T.: Formalizing design patterns. In: Proceedings of ICSE 1998, Wash-
ington, DC, USA, pp. 115–124. IEEE Computer Society, Los Alamitos (1998)

18. Ossher, H., Kaplan, M., Harrison, W., Katz, A., Kruskal, V.: Subject-oriented
composition rules. In: Proceedings of OOPSLA 1995, NY, USA, pp. 235–250. ACM
Press, New York (1995)

19. Riehle, D.: Describing and composing patterns using role diagrams. In: Mätzel,
K.-U., Frei, H.-P. (eds.) 1996 Ubilab Conference, Zürich, Germany, June 1996, pp.
137–152 (1996)

20. Sabatucci, L.: A Framework for Rapid Development of Multi-Agent System. PhD
thesis, Dipartimento di Ingegneria Informatica, University of Palermo, Italy (2008)

21. Whittle, J., Moreira, A., Araújo, J., Jayarama, P., Elkhodary, A., Rabbi, R.: An
expressive aspect composition language for uml state diagrams. In: Model Driven
Engineering Languages and Systems, pp. 514–528 (2007)

22. Yacoub, S.M., Ammar, H.H.: Uml support for designing software systems as a
composition of design patterns. In: Gogolla, M., Kobryn, C. (eds.) UML 2001.
LNCS, vol. 2185, pp. 149–165. Springer, Heidelberg (2001)

http://www.jhotdraw.org/
http://www.junit.org


Pattern-Based Transformation Rules

for Developing Interaction Models of Access
Control Systems

Dae-Kyoo Kim and Lunjin Lu

Department of Computer Science and Engineering
Oakland University, Rochester, MI 48309, USA

{kim2,l2lu}@oakland.edu

Abstract. This paper presents a set of transformation rules for trans-
forming a non-secure interaction model to a secure interaction model us-
ing an access control pattern. The transformation rules resolve conflicts,
uncertainties and type mismatches that may arise during pattern appli-
cation. We demonstrate a case study using the Mandatory Access Con-
trol pattern and a defense messaging system in the military domain, and
discuss about an analysis of the resulting model for pattern conformance.

1 Introduction

Access control provides integrity, confidentiality and availability of shared re-
sources in a system. The development of an access control system involves high
complexity due to the cross-cutting nature of access control. The complexity
can be effectively managed by systematic use of access control models (e.g., see
[2,4,10]) which describe a mechanism for governing access requests to shared
resources at a high level of abstraction. We view an access control model as a
design pattern that provides a generic solution for access control problems. This
view promotes the reusability of an access control model and helps in detecting
errors at earlier stages.

In this paper, we present a set of transformation rules for transforming a non-
secure interaction model to a secure interaction model using an access control
pattern. The transformation rules are used to resolve uncertainties, conflicts
and type mismatches that may arise during pattern application. In our work,
we describe interaction models in the Unified Modeling Language (UML) [7],
a de facto standard language for modeling software systems, and access control
patterns in the Role-Based Metamodeling Language (RBML) [5], a sub-language
of the UML for precisely specifying design patterns. Use of precise specifications
of access control patterns enables systematic reuse of access control patterns.

A major contribution of this paper is the transformation rules that 1) resolve
uncertainties in determining the location to add pattern behavior in the model,
2) handle conflicts associated with operator fragments (e.g., alt, break, opt) in
UML 2.0, and 3) address the problem of type mismatches where the type of a
model element is different from that of its corresponding pattern element.

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 306–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Pattern-Based Transformation Rules for Developing Interaction Models 307

We demonstrate how the presented transformation rules can be used for trans-
forming a model of a defense messaging system using the Mandatory Access
Control (MAC) pattern [7]. The transformed model is analyzed for conformance
to the applied pattern and the transformation rules. The remainder of the pa-
per is organized as follows. Section 2 relates our work to other work. Section 3
describes an RBML specification of the behavior of the MAC pattern. Section 4
presents transformation rules. Section 5 demonstrates a case study using the
technique, and Section 6 concludes the paper.

2 Related Work

Model transformation has gained great attention in aspect-oriented modeling
[1,8,9] where cross-cutting concerns are modeled as design aspects separately
from functional aspects. Clarke and Walker [1] proposed composition patterns
to decompose and compose cross-cutting aspects based on subject-oriented tech-
niques. The composition patterns are described in UML templates and composed
with a functional model through parameter binding. Their work suffers from du-
plication problem [8] caused by one-to-one binding when a pattern is instantiated
multiple times. The concept of roles in our work overcomes this limitation.

Reddy et al. [9] proposed a tag-based approach for composing sequence di-
agrams. Similar to Clarke and Walker’s work, they use a variation of UML
templates to design a cross-cutting behavior as a design aspect. The sequence
diagram being composed can have two types of tags (simpleAspect and compos-
iteAspect) that specify insertion points of the aspect in the model. A composite
aspect includes position fragments (e.g., begin, end) which constrain the loca-
tion of the fragment interactions that are added to the sequence diagram. Aspect
parameters are bound to corresponding elements of the sequence diagram based
on an implicit binding semantics. Their work has a similar limitation to Clark
and Walker’s work due to use of templates. The position fragments influenced
the position directives in our work for designating insertion points.

Klein and Plouzeau [8] proposed a three-step approach for composing sequence
diagrams. In the first step, the sequence diagram to be composed is decomposed
into basic sequence diagrams which contain only sending and receiving messages
and high-level sequence diagrams which contain fragment operators. In the sec-
ond step, interface sequence diagrams that capture the common behaviors of
the basic sequence diagrams are designed. In the third step, the designer de-
termines if the pattern sequence diagram can be simply added into high-level
sequence diagrams, or should be composed with the basic sequence diagrams.
They accurately point out the problem of duplicate behaviors with templates
when multiple instantiations are made. To address this issue, they use the in-
terface sequence diagrams from the second step to exclude duplicate behaviors.
However, use of interface sequence diagrams introduces places for potential er-
rors and makes the composition process complicated. The concept of interface
sequence diagrams is similar to the interaction patterns in our work in that they
capture a common behavior.



308 D.-K. Kim and L. Lu

3 Specifying Mandatory Access Control

Mandatory Access Control (MAC) is an access control model that governs access
based on security levels [10]. We presented MAC as an access control pattern [7],
and henceforth refer to MAC as the MAC pattern. The MAC pattern consists of
the following concepts: User, Subject, Object, Operation, Security Level, Category
and Reference Monitor [7]. User represents a user or a group of users who interact
with the system. A user is assigned a hierarchical security level (e.g., SECRET,
CONFIDENTIAL) and a non-hierarchical category (e.g., U.S., Allies). A user
may have multiple login IDs which can be active simultaneously. A user may
also create or delete one or more subjects. Subject represents a computer process
which acts on behalf of the user to request an operation on the target object.
Object represents any information resource in the system that can be accessed
by user. Like a subject, an object is assigned a hierarchical security level and a
non-hierarchical category. Operation is an action invoked by a subject to perform
a task on the target object. Security Level represents a hierarchical classification
assigned to users (subjects) and objects. Category represents any value from a
non-hierarchical set. Reference Monitor checks the accessibility of the user by
enforcing the following constraints. Given that L(s) is the security level of a
subject s and L(o) is the security level of an object o:

• Simple Security property: A subject s can read an object o only if L(s) ≥ L(o).
• Restricted *-property: A subject s can write an object o only if L(s) ≤ L(o).

We use the Role-Based Metamodeling Language (RBML) [5] to specify the MAC
pattern. RBML is a UML-based pattern specification language developed in our
previous work [5] to precisely specify design patterns. The RBML defines a
pattern in terms of roles which are played by UML model elements. Every role
has a base metaclass in the UML metamodel and metamodel-level constraints
which specialize the base metaclass to restrict the type of the model elements
that can play the role. Every role has a realization multiplicity to constrain
the number of elements playing the role. If the realization multiplicity is not
specified, the default multiplicity 1..* is used requiring that there be at least one
element playing the role.

Interaction Pattern Specifications (IPSs) are a type of RBML specifications cap-
turing the interaction behavior of a pattern in a sequence diagram view. An IPS
consists of lifeline roles and message roles whose base is the Lifeline metaclass
and the Message metaclass in the UML metamodel. In the UML metamodel
view, an IPS defines a specialization of the UML metamodel which characterizes
a family of sequence diagrams. A member in the family is said to conform to
the IPS [5]. A conforming sequence diagram must have lifelines that can play
the lifeline roles in the IPS. A lifeline conforms to a lifeline role if the lifeline
has messages whose sequence of incoming and outgoing messages is the same as
that of the incoming and outgoing message roles on the lifeline role.

Figure 1 shows an IPS for the MAC pattern where roles are denoted by
the symbol “|”, and their base metaclass is shown implicitly by the graphical



Pattern-Based Transformation Rules for Developing Interaction Models 309

r2=|checkAccess(|s,|obj,|op)

alt

ALT
4

5

|performOperation(|op) 1

{cascade}

ALT

6

3

STRICT

|delegateRequest(|s,|obj)

{cascade}

ALT

1
|s:|Subject 1 :|SubjectLiaison 2..* |op:|Operation 1 :|ReferenceMonitor 1 :|SecurityLevel 1 :|ObjectLiaison 2..* |obj:|Object 1

2

STRICT

[|ObjectLiaison not exists]

[r2=authorized]

|performOperation(|op)

[else] |initiateOperation(|op) 1
|delegateOperation(|op)

[else]

|access_denied

[|SubjectLiaison not exists]

|access_denied_1 [else]

|access_denied_2
|access_denied_3

|requestOperation(|s,|obj) 1

|checkDominance(|s,|obj)
r2=|checkAccess(|s,|obj,|op)

|initiateRequest(|s,|obj) 1[else]

[|SubjectLiaison not exists]

|requestOperation(|s,|obj)

|checkDominance(|s,|obj)

Fig. 1. MAC IPS

notation. The roles that have a realization multiplicity other than the default
multiplicity 1..* are explicitly specified. The IPS shows use of two metamodel
operators, ALT and STRICT which are defined in the RBML to constrain the
structure of a conforming sequence diagram. The ALT operator is used to define
alternative scenarios with a guard condition for conforming sequence diagrams.
Only one scenario that satisfies the guard condition can appear in a conforming
model. The STRICT operator preserves the message sequence in the fragment
which should not to be disturbed by any other messages in a conforming model.
This operator preserves a critical sequence of pattern behaviors. Note that these
operators are different from the UML model operators (e.g., alt, strict) which
design the behavior of objects at runtime. The RBML metamodel operators
are distinguished in capital letters from UML model operators. An IPS may
also have UML model operators as shown in Figure 1 (e.g., alt). Use of the alt
operator requires a conforming model to have a corresponding operator that
exhibits lifelines and messages that play the lifeline roles and message roles in
the alt operator in the MAC IPS.

Given the notational background, the MAC IPS describes the following. A
subject requests an operation with parameters including itself and the target
object. There are two ways of sending the request as specified in the ALT frag-
ment ①. One way is to send the request directly to the operation lifeline, and the
other way is to send the request through subject liaisons which are intermediate



310 D.-K. Kim and L. Lu

lifelines delegating the request to the operation object. Only one scenario may
appear in a conforming model. It should be noted that the |SubjectLiaison life-
line role and its associated message roles (|initiateRequest(), |delegateRequest(),
|requestOperation()) are required only in the second scenario of the fragment ①.
The message roles have the following dependencies:

• An |initiateRequest() operation requires a |requestOperation() operation.
• A |delegateOperation() operation requires a |requestOperation() operation.

The cascade constraint on the |delegateRequest() role specifies that an ini-
tialRequest() message is delegated through intermediate lifelines playing the
|:SubjectLiaison lifeline role until a requestOperation message is invoked on the
op:Operation lifeline. A lifeline role that has a cascade constraint must have a
realization multiplicity with a lower bound greater than or equal to 2 so as to ob-
tain a meaningful delegation as shown in the |:SubjectLiaison role. The request is
checked for accessibility by the checkDominance() operation which enforces the
simple security property and restricted-* property, as described in the STRICT
fragments ② and ③. These fragments mandate the interaction sequences not to
be interfered by any other interactions in a conforming model. The alt fragment
④ describes the authorized case and denied case. If the request is authorized, it
can be sent directly to the target object or through object liaisons (intermedi-
ate lifelines delegating the requests) as specified in the ALT fragment ⑤. If the
access is denied, the request is sent back to the subject, which is described in
the ALT fragment ⑥. A conforming sequence diagram must have an alt frag-
ment corresponding to the alt fragment ④ with the same relative sequence of
interactions as specified in the fragment ④.

4 Transformation Rules

Pattern-based model transformation is a process of transforming a model using a
design pattern to improve a certain quality of the system. During transformation,
conflicts, uncertainties or type mismatches may occur. To handle these issues,
we define the following rules:

Unmapped Message Roles (UMR). Given a mapping, the location of the
mapped message roles in the model is automatically determined to be where the
mapped messages are present. However, the location for unmapped roles may
not be determined. For example, in Figure 2(a) while the location of the |m1’()
role is determined at the mapped message m1() in the transformed model, the
location for the unmapped role |m2’() is not determined. According to the IPS,
an instance (m2’()) of the |m2’() must be placed after the m1() message playing
the m1’() role. However, the sequence diagram has another message m2() after
m1() which should be taken into account in determining the location of m2’().
In consideration of m2(), m2’() can be placed either before m2() or after m2(),
which is nondeterministic.

To resolve such an uncertainty, we define two position directives, [(message|m-
essage role) before (message|message role)] and [(message|message role) after



Pattern-Based Transformation Rules for Developing Interaction Models 311

[m2() before |m2’()]

mapped_to

:ClassB :ClassA op:Op

instantiated

:ClassB:ClassA :|RoleA

op(p1,p2,..)

m1’()

Sequence Diagram

|m2’()

|m1’() call()
do(op)

m2’()

Transformed Sequence DiagramIPS

(b) Type Conversion: Message to Lifeline

Sequence Diagram

|m1’()

|m2’()

instantiated

mapped_to

:ClassA :|ClassA :|ClassB:ClassB :ClassA :ClassB

alt m1’()

m2’()

alt

IPS Transformed Sequence Diagram

(d) Prohibited Alternatives Transformation

break

:ClassB

Sequence Diagram

(e) Prohibited Break Transformation

IPS Transformed Sequence Diagram

break m1’()

m2’()

|m1’()

|m2’()

:ClassA :|ClassA:ClassB :|ClassB

instantiated

:ClassA

mapped_to

:ClassB

Sequence Diagram IPS

|m1’()

|m2’()

m1’()

m2’()opt
opt

:ClassA :|ClassA

mapped_to

:|ClassB :ClassA

instantiated

:ClassB

Transformed Sequence Diagram

(f) Prohibited Optional Transformation

:ClassA :ClassB

mapped_to

:ClassB:ClassA:|ClassA :|ClassB

:ClassD:ClassC:ClassA :ClassB

m1()

m2()

:|RoleA :ClassA b:ClassC

m1()

instantiatedmapped_to

|op(|p1,|p2...)
op(p1,p2,...)

m2()

(c) Type Conversion: Lifeline to Message

Sequence Diagram IPS Transformed Sequence Diagram

instantiated

m2()

m1()
m2()

m1()

m2’()
|m2’()

|m1’()

(a) Unmapped Message Role Ordering

Transformed Sequence DiagramSequence Diagram IPS

Fig. 2. Transformation Rules

(message|message role)] to designate a particular location for a message or a
role instance. For example, [a() before |b()] stipulates that the message a() be
placed immediately before an instance of the |b() role. Using position directives,
the problem in Figure 2(a) can be resolved by specifying [m2() before |m2’()]
which places the m2() message right before an instance of the |m2’() role (m2’()).
Note that position constraints should not violate the pattern behavior. For ex-
ample, having [|m2’() before m1()] would violate the pattern behavior due to
the reverse sequence of the messages playing the |m1’() and |m2’() roles.

Type Mismatches (TM). Given a mapping, an element may be mapped to
a role whose base is different from the type of the element. In such a case, a
type conversion is required. A concrete example is found in the Visitor design
pattern [3] where cross-cutting operations over an object structure are captured
as visitor classes. In general, these operations are designed as operations, and
use of the Visitor pattern requires transforming them to classes. To handle a
message-to-lifeline type mismatch, we define the following rule:

Mapping a message op() to a lifeline role |:RoleA creates a new lifeline op:Op
(an instance) of the |:RoleA role and adds a call() message from the source
lifeline of op() to the new lifeline op:Op and a do() message from the new
lifeline op:Op to the target lifeline of op().



312 D.-K. Kim and L. Lu

Figure 2(b) illustrates the rule. In the figure, the op() message whose type is
the Message metaclass is mapped to the :|RoleA role whose type is the Lifeline
metaclass. This requires to transform the op() message to a lifeline (op:Op) that
can play the :|RoleA role.

The TM rule reestablishes the interaction between the new lifeline op:Op
and the source lifeline (:ClassA) and the target lifeline (:ClassB) of the op()
message in the original sequence diagram using two auxiliary messages call()
and do(). The call() message captures the operation call invoked by the source
lifeline :ClassA and is added between the source lifeline :ClassA and the new life-
line op:Op. The do() message captures execution of the call on the target lifeline
:ClassB and is added between the new lifeline op:Op and the target lifeline
:ClassB. The do() message takes the new lifeline :op:Op as a parameter to exe-
cute it on the target lifeline :ClassB. There are two issues involved in a message-
to-lifeline transformation. One is determining locations for the call() and the
do() messages in the transformed model, which requires considering the message
sequence in the sequence diagram and the sequence of the unmapped message
roles in the IPS. To address this issue, we use the before and after directives
presented in the UMR rule as follows:

op() �→ :|RoleA ([call() after |m1’()],[do() before |m2’()])

This constraint specifies that the call() operation must be placed immediately
after an instance of the m1’() role, and the do() operation immediately before an
instance of the m2’() role. If there are multiple instances of the |m1’() role, the
after directive places the call() message after the last instance. Similarly, if there
are multiple instances of |m2’(), the before directive places the do() message
before the first instance. The call() and the do() messages may be specified to
play the |m1’() and the |m2’() roles, respectively, as follows:

op() �→ :|RoleA ([call() �→ |m1’()],[do() �→ |m2’()])

In this case, the |m1’() and the |m2’() roles are not instantiated. If the mes-
sage roles mapped to the call() and the do() messages involve parameter roles,
they must be instantiated in the signature of the call() and the do() messages.
The other issue to address is handling the parameters of the message being
transformed. In Figure 2(b), the op message has two parameters (p1, p2). Since
the message is transformed to a lifeline, the parameters of the message should
be handled in some way. We assume that the parameters are transformed to
attributes of the corresponding class of the new lifeline in the class diagram de-
rived from the transformed sequence diagram (not shown in Figure 2(b)). This
makes the parameters no longer expressive in the sequence diagram.

The opposite conversion from a lifeline to an operation is also possible. For
example, a creator lifeline in a sequence diagram may be mapped to a creator
message in a pattern (e.g., the Abstract Factory pattern [3]). To handle such a
conversion, we define the following rule:

Mapping a lifeline :ClassA to a message role |op() creates a new message
op() (an instance) of the |op() role and a new lifeline :ClassB (an instance) of



Pattern-Based Transformation Rules for Developing Interaction Models 313

the target lifeline role of the |op() role, and redirects the incoming and outgoing
messages of the :ClassA lifeline to the new lifeline :ClassB.

Figure 2(c) illustrates the rule. In the figure, the :ClassB lifeline is mapped to
the |op() message role. The transformation rule creates instances (op(), :ClassD)
of the |op() role and its target lifeline role :|RoleA, and redirects the messages
m1() and m2() of the :ClassB lifeline to the new lifeline :ClassD. However,
the location of the op() message in the transformed sequence diagram is not
determined yet. There are three places where the op() message can be placed:
before m1(), after m2, in between m1() and m2(). To designate a location, the
following constraint is defined, placing the op() message in the third option:

:ClassB �→ |op() ([|op() after m1()],[|op() before m2()])

In a lifeline-to-message transformation, we assume that the properties of the
lifeline become properties of the target lifeline of the transformed message.

Operator Fragments (OF). The model being transformed may have frag-
ments of the alt, break and opt operators [11] whose execution depends on
a guard condition. If a pattern behavior is composed with a fragment of these
operators, the pattern behavior cannot be guaranteed to be executed because of
the conditional execution. To prevent this, we define the following rules:

– alt Rule. An alt fragment describes alternative scenarios determined by a
guard condition. If the pattern behavior is split into the two choices of an alt
fragment, the pattern behavior exhibited in the unselected choice at runtime
will not be executed. To prevent this, the following rule is defined:

A pattern cannot be split into the alternatives in an alt fragment.

Figure 2(d) shows a prohibited transformation for an alt fragment. In the
figure, the m1’() instance of the |m1’() role is composed with the first choice
of an alt fragment, while the (m2’() instance of the |m2’() role is composed
with the second choice. This is invalid because either of m1’() or m2’() in
the alt fragment will not be executed, which violates the pattern.

– break Rule. A break fragment describes a terminating scenario for the se-
quence diagram. If a pattern behavior is composed with a break fragment,
the pattern behavior will not be executed if the guard condition of the frag-
ment is false. To prevent this, the following rule is defined:

A pattern cannot be split into a break fragment and the normal scenarios
(the scenarios outside of the break fragment).

Figure 2(e) shows a prohibited transformation for a break fragment. The
transformation shows that the m1’() instance of the |m1’() role is composed
with the break fragment while the m2’() instance of the |m2’() role is com-
posed with the normal scenarios. This should be prohibited because m2’()
cannot be executed when the break fragment is enabled or vice versa.

– opt Rule. An opt fragment describes a choice of behavior depending on a
guard condition. An opt fragment is similar to a break fragment in terms of



314 D.-K. Kim and L. Lu

structure, but does not require to break out the normal scenario. As a matter
of fact, an option is semantically equivalent to an alternative fragment where
the first choice has non-empty content and the second choice is empty [11].
A similar rule to the break rule is defined for opt fragments as follows:

A pattern cannot be split into an opt fragment and the regular scenarios
(the scenarios outside of the opt fragment).

Figure 2(f) shows a prohibited transformation for an opt fragment. In the
figure, the (m1’()) instance of the |m1’() role is composed with the regular
scenario, while the (m2’()) instance of the |m2’() role is composed with an
opt fragment. This violates the pattern because the m2’() message will not
be executed when the guard condition of the fragment is false.

5 A Case Study

We demonstrate the transformation rules using the MAC pattern applied to a
defense messaging system (DMS) in the military domain. The DMS allows a
user to create a new message, set up a sensitivity level for the message, and send
and receive the message. Only an authorized and uniquely identified user can
use the system. A sent message is sorted by the message sorter to identify the
recipient. The recipient is checked for accessibility to the message based on MAC
policies before receiving. If the sensitivity level of the recipient does not satisfy
the sensitivity level set in the message, the recipient cannot receive the message,
and the message is sent back to the sender. Every successful and erroneous
transaction must be logged in persistence. In this case study, we assume that the
security level of the message is same as the sender’s. Figure 3 shows a sequence
diagram describing sending a message without access control. We apply the MAC
pattern to the sequence diagram based on the following mapping:

(o:MsgSender �→ |s:|Subject), (sendMsg 1() �→ |initiateRequest()),
(:MsgSorter �→ :|SubjectLiaison), (:Delivery �→ :|SubjectLiaison),
(sendMsg 2() �→ |delegateRequest()), (r:MsgRecipient �→ |obj:|Object),
(sendMsg 3() �→ |op:|Operation ([call() �→ |requestOperation()],[do() �→ |perform-
Operation()])).

The mapping is given as input to the transformation algorithm [6] to evaluate
conformance of the elements to the mapped roles by enforcing the metamodel-
level constraints of the roles. If any nonconformance exists, the element is trans-
formed to be conformant by the algorithm. The only metamodel-level constraint
in the MAC IPS is the base metaclass which requires type matching. The only vi-
olating mapping of this constraint is (sendMsg 3() �→ |op:|Operation) where the
type of sendMsg 3() is the Message metaclass, while the type of the |op:|Operation
role is the Lifeline metaclass. The transformation algorithm applies the TM rule
to this pair to convert the type of sendMsg 3() to the Lifeline metaclass.

Applying the rule results in creation of a lifeline op:sendMsg 3 and two mes-
sages call() and do(). The mappings of (call() �→ |requestOperation()) and (do()



Pattern-Based Transformation Rules for Developing Interaction Models 315

sortMsg(r,m)

m:Message

:Delivery

alt [sorted] sendMsg_2(r,m)
sendMsg_3(m)

logMessage(r,m)

[else] logMessage(r,m)
return message

:MsgSorter

createMsg()

:Transactions:MsgSender r:MsgRecipient

create

sendMsg_1(r,m)

Fig. 3. Defense Messaging System

�→ |performOperation()) require the parameter roles (|s, |obj, |op) of the requestO-
pration() and performOperation() roles to be instantiated into the signature of
the call() and do() messages.

The mapping determines which scenario in the ALT fragments ①, ⑤ and
⑥ in Figure 1 the DMS model should conform to. The mappings (:MsgSorter
�→ :|SubjectLiaison) and (sendMsg 2() �→ |delegateOperation()) determine the
second scenario in the ALT fragment ① which describes delegation of the re-
quest through subject liaisons. This also determines the second scenario in the
fragment ⑥. Similarly, the mapping (do() �→ |performOperation()) determines
the first scenario in the ALT fragment ⑤ which describes sending the request
directly to the target object. These require the DMS model to have message
sequences conforming to the second scenario of the ALT fragment ① and the
first scenario of the ALT fragment ⑤.

The unmapped roles (:|ReferenceMonitor, :|SecurityLevel, |requestOperation(),
|checkAccess(), |checkDominance(), |access denied 1, |access denied 2, |access de-
nied 3) in the MAC IPS are instantiated to be added into the model. The UMR rule
is applied to determine the location of the unmapped message roles in the trans-
formed model. In Figure 1, the |requestOperation(), |checkAccess() and
|checkDominance() roles are specified in aSTRICT fragmentwhich requires their
sequence to be preserved. Thus, instances of the roles are treated as one block. The
location of the block can be determined relative to the locations of the messages
mapped to the |delegateRequest() and |performOperation() roles which are imme-
diately before and after the block. The above mapping shows that the two roles
are mapped to the sendMsg 2() message and the do() message, respectively. This
determines that the instance block must be placed between the sendMsg 2() and
the do() messages. The return message roles in the second scenario of the fragment
⑥ are instantiated according to the mapping for the |s:|Subject, :|SubjectLiaison
and |op:|Operation roles. Note that the unmapped roles in the unselected scenario
in ①, ⑤ and ⑥ should not be instantiated unless they participate in the selected
scenario.

The DMS model has one alt fragment for which the OF rule should be applied.
The OF rule prohibits the MAC IPS from being split into the two different
scenarios in the alt fragment. Given the mapping and enforcement of the UMR
rule, the OF rule is observed.



316 D.-K. Kim and L. Lu

createMsg()

alt

5

6

3

alt

4
from the second
scenario of 

1scenario of 
from the second

s:MsgSender :MsgSorter op:sendMsg_3:Delivery :ReferenceMonitor :SecurityLevel :Transaction r:MsgRecipient

do(op,m)

access_denied_2

access_denied_1
[else]

access_denied_3

logMessage(r,m)

[else]
logMessage(r,m)

return message

[r2=authorized]

scenario of 

scenario of 
from the second

from the firstcheckDominance(s,r,op) from
r2=checkAccess(s,r,op)

call(s,r,m)

sendMsg_2(s,r,m)
[sorted]

sortMsg(s,r,m)

sendMsg_1(s,r,m)

m:Message
create

Fig. 4. Case 1: Defense Messaging System with MAC

Figure 4 shows the resulting sequence diagram where the pattern behaviors
are highlighted. In the model, the MAC pattern intercepts the request from
Delivery to the recipient to check dominance of the recipient’s security level over
the security level set on the message. If the recipient’s security level is higher
than the message’s security level, the request is authorized, and the message is
delivered to the recipient. Otherwise, the request is denied, and the message is
sent back to the sender. The outer alt fragment is added by the alt fragment
④. The sequence of the call(), checkAccess() and checkDomination() messages
in the outer alt fragment preserves the sequence in the STRICT fragment ③.

The transformed model should be checked for conformance to the pattern
to ensure correct incorporation of the pattern behavior. We have conducted a
conformance evaluation for the transformed model using logic programming. In
the evaluation, we implemented the MAC pattern as a query and the transformed
model as a logic program. The logic program is executed with the query to
compute all feasible mappings by enforcing the conformance rules described in
Section 4. The details of the approach are beyond the scope of this paper.

6 Conclusion

We have presented a set of transformation rules for developing interaction mod-
els using design patterns and demonstrated the application of the transforma-
tion rules via a defense messaging system and the MAC pattern. In addition
to the case study presented in this paper, we have conducted two other case
studies for a healthcare system and a database access system. The presented
transformation rules are developed based on these case studies. We expect the



Pattern-Based Transformation Rules for Developing Interaction Models 317

rules to be extended as more case studies are conducted. A possible extension
would be converting an operation parameter to a lifeline or vice versa. Rigorous
transformation rules presented in this paper together with a precise RBML spec-
ification of an access control pattern provides a solid foundation for mechanical
pattern application. Also, the metamodeling design of a pattern facilitates the
development of a prototype. We are currently developing a prototype tool for
the proposed technique. Such a tool would enable not only automatic pattern
application, but also automatic rollback of an applied pattern when necessary.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. CCF-0523101.

References

1. Clarke, S., Walker, R.: Composition Patterns: An Approach to Designing Reusable
Aspects. In: Proceedings of International Conference on Software Engineering,
Toronto, Canada, pp. 5–14 (2001)

2. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST Standard for Role-Based Access Control. ACM Transactions on Information
and Systems Security 4(3) (2001)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

4. Harrison, M.H., Ruzzo, W.L., Ullman, J.D.: Protection in Operating Systems.
Communications of the ACM 19(8), 461–471 (1976)

5. Kim, D.: The Role-Based Metamodeling Language for Specifying Design Patterns.
In: Taibi, T. (ed.) Design Pattern Formalization Techniques, pp. 183–205. Idea
Group Inc. (2007)

6. Kim, D., Gokhale, P.: A Pattern-Based Technique for Developing UML Models of
Access Control Systems. In: Proceedings of the 30th Annual International Com-
puter Software and Applications Conference, Chigaco, IL, pp. 317–324. IEEE Com-
puter Society Press, Los Alamitos (2006)

7. Kim, D., Mehta, P., Gokhal, P.: Describing Access Control Patterns Using Roles. In:
Proceedings of Pattern Languages of Programming Conference (PLoP), Portland,
OR (2006)

8. Klein, J., Plouzeau, N.: Transformation of Behavioral Models Based on Composi-
tions of Sequence Diagrams. In: Proceedings of Model-Driven Architecture: Foun-
dations and Applications 2004 (MDAFA), Linkoping, Sweden, p. 255 (2004)

9. Reddy, R., Solberg, A., France, R., Ghosh, S.: Composing Sequence Models using
Tags. In: Proceedings of MoDELS workshop on Aspect Oriented Modeling, Genova,
Italy (2006)

10. Sandhu, R., Samarati, P.: Access Control: Principles and Practice. IEEE Commu-
nications 32(9), 40–48 (1994)

11. The Object Management Group (OMG). Unified Modeling Language: Superstruc-
ture. Version 2.0 Formal/05-07-04, OMG (August 2005), http://www.omg.org

http://www.omg.org


H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 318–329, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Balancing Quantification and Obliviousness 
in the Design of Aspect-Oriented Frameworks 

Linda Seiter 

John Carroll University, Department of Mathematics and Computer Science 
University Heights, Ohio, United States 

lseiter@jcu.edu 

Abstract. Aspect-oriented languages support modular programming by providing 
powerful referencing mechanisms that allow programmers to make quantified as-
sertions about their programs. An aspect selects a set of program elements using a 
reference called a pointcut. An aspect also defines advice methods that transform 
the control flow surrounding the selected program elements. It is difficult, how-
ever, to define a reusable aspect when the advice methods require access to the lo-
cal context of the program elements, as the bindings of the advice parameters may 
vary in each application. This leads to a breakdown of the modularity, quantifica-
tion and obliviousness properties of aspect-oriented programming. This paper 
presents a model for modularizing the crosscutting references found in aspect-
oriented frameworks. An extension to AspectJ is presented that utilizes Java anno-
tations to implement polymorphic advice method parameters. 

1   Introduction 

Aspect-oriented programming (AOP) is a powerful mechanism for achieving software 
reuse, particularly when implementing crosscutting concerns. A concern is crosscut-
ting if it is not easily encapsulated within a single object-oriented construct such as a 
class or a method. Filman and Friedman propose that the distinguishing feature of 
AOP is the ability to make quantified assertions about programs that were written by 
programmers oblivious to such assertions [3]. At a minimum they require that an as-
pect-oriented language supports the expression of statements of the form [3]: 

In programs P, whenever condition C arises, perform action A. 

Quantification involves the reuse of the functionality encapsulated in action A 
without requiring the programmer to explicitly list all of the places in program P 
where condition C arises. Thus, a quantified reference encapsulates a description of 
condition C in a single program expression. As an example, assume we wish to make 
the following global assertion:  

In program P, whenever a constructor is called, record the call to a log file. 

There may be many statements in program P that involve a constructor call. The 
condition “all constructor calls” is crosscutting in an object-oriented language since it 
can not be encapsulated in a single class, method or expression. An AOP language 



 Balancing Quantification and Obliviousness in the Design of AO Frameworks 319 

such as AspectJ allows all such statements to be referenced by a pointcut [2]. The 
condition “all calls to a constructor” can be expressed by the pointcut: 

call(*.new(..)) 

 

Fig. 1. Quantification: One to Many Binding 

A pointcut describes one or more join points, which are points of execution in a 
program. The constructor calls in Figure 1 represent three separate join points. When 
a join point is reached during program execution, an aspect can specify code to exe-
cute before, after or in place of the join point, thus transforming the normal flow of 
control. In AspectJ, the control flow transformation is encapsulated in an advice 
method [2]. The pointcut describes the join points representing the condition C, while 
the advice method represents the action A to perform as each join point is reached. 
Quantification occurs when a pointcut describes a set of join points as in Figure 1. 
Obliviousness is preserved since the application source code does not directly refer-
ence the aspect code. It is the pointcut that establishes the reference to the application 
join points. However, consider the following situation:  

In programs P, whenever condition C arises, perform action A with object O. 

Specifically, action A must reference an object O that exists within the scope of a 
program element specified by condition C. In AOP terms, the advice method requires 
a reference to an object in the current join point scope. Object O may be referenced 
through a method parameter at one join point, or it may be referenced as the target of 
the method at another join point. The modularity of program P may be broken and the 
ability to make quantified assertions may be diminished when action A is not com-
pletely independent of the context in which condition C arises [11].  

This paper presents a solution for supporting quantified, polymorphic references to join 
point contexts within AspectJ advice methods. Section 2 first illustrates the problem with 
an example framework. Section 3 demonstrates the use of Java annotations to support po-
lymorphic aspect advice parameters, and discusses the tradeoff the programmer must con-
sider in balancing the goal of aspect reuse with the goal of application-level obliviousness. 
Section 4 includes a discussion of related work. The paper concludes with a description of 
tool support for implementing polymorphic advice parameters. 

2   Aspect-Oriented Framework for Thrashing Detection  

Consider the design of a framework for detecting signs of thrashing in multi-agent 
swarm applications [10]. The framework is illustrated with two problem domains, 



320 L. Seiter 

vertex coloring and Sudoku puzzle, which are both abstractions of common resource 
allocation and scheduling problems. 

In the vertex coloring problem, each vertex must have a color that differs from its ad-
jacent vertices. The general case of vertex coloring for non-planar graphs is NP-
Complete. The goal is to find the minimum number of colors required to color the graph. 
The Sudoku puzzle requires the digits 1 to 9 to appear exactly once in each column, each 
row, and each of the nine 3×3 blocks. The Sudoku puzzle problem is also intractable. The 
goal in a swarm application is to enable emergence, where a global solution to a complex 
problem arises out of the simple interactions of many agents. For vertex coloring, each 
vertex is an agent that checks for color conflicts with neighboring vertices. If a conflict 
exists, the vertex picks a new color. Partial solutions in the form of a conflict-free sub-
graph will spread through the graph over the course of a simulation. However, the partial 
solutions dissolve when a vertex on the border of the conflict-free sub-graph changes its 
color due to a neighboring conflict. The color change may cause a new conflict with a 
neighboring vertex. This has a trickle effect that causes the dissolution of the partial solu-
tion. The frequent dissolution of partial solutions can be viewed as a sign of agent thrash-
ing. Similar behavior arises in the Sudoku puzzle, where an agent is assigned to each cell, 
as well as other multi-agent applications. 

 

 

Fig. 2. Vertex Coloring and Sudoku Puzzle Problems 

2.1   Stability Monitoring with Singleton Aspects 

Thrashing detection and management is a crosscutting concern that can not be modu-
larized in a single class. The first step to implementing this concern is to intercept the 
execution of the agent’s conflict detection method in order to maintain a history of 
agent stability. This paper presents a simplified model for maintaining the history. It 
does not discuss conflict resolution and thrashing management. The framework im-
plements the following global assertion:  

When a conflict test occurs, update the agent’s stability based on the result of the 
conflict test. 

The condition is the execution of an agent’s conflict test method. The action to per-
form is the update of the agent’s stability. The action requires two references to objects 
that are in the local context of the test method: (1) the agent under test and (2) the result 
of the test. Each agent must be extended with state and behavior for monitoring its sta-
bility. Static crosscutting defines a set of changes to be made to a class [2]. It is depicted  
 



 Balancing Quantification and Obliviousness in the Design of AO Frameworks 321 

 

Fig. 3. Inter-Type Declaration Diagram for Vertex Stability Monitoring Aspect  

visually in an Inter-Type Declaration Diagram (ITDD) [4]. Figure 3 contains an ITDD 
for an aspect that adds stability monitoring to the vertex coloring application. The 
left-hand side of the diagram shows the classes that will be altered, Vertex and Color-
Strategy. The ColorStrategy.correctColor method detects color conflicts for the ver-
tex parameter and returns a value indicating whether the vertex is conflict free. The 
right-hand side of the diagram describes how to transform the model using inter-type 
declarations, which add new fields, methods, super-classes or interfaces to a class [2]. 
The right-hand side introduces a new interface Agent and new class AgentImpl that 
realizes the interface. The Vertex class is altered by weaving in a new superclass 
AgentImpl, which adds state and behavior for recording stability. 

 

Fig. 4. Advice Diagram for Vertex Stability Monitoring Aspect 

Dynamic crosscutting describes the changes made to the application’s control flow 
and is depicted in an Advice Diagram. The left hand side of the Advice Diagram in 
Figure 4 declares a pointcut that will intercept the conflict detection method ColorStrat-
egy.correctColor. The pointcut binds two variables at the join point: agent and conflict-
Free. The agent variable is bound to the vertex object that is passed as a parameter to 
ColorStrategy.correctColor. The conflictFree variable is bound to the boolean value 
 



322 L. Seiter 

that is returned from the method. The right hand side of the diagram in Figure 4 de-
scribes what happens when the method execution join point is reached. It updates agent 
stability based on the conflict test result. 

@Aspect  
public class VertexStabilityMonitoring { 
  @DeclareParents(value="Vertex",  
                  defaultImpl=AgentImpl.class) 
  public Agent agent;  

 
  @Pointcut("execution( args(agent) && 
          Boolean ColorStrategy.correctColor(Vertex))") 
  void conflictTest(Agent agent) {} 

 
  @AfterReturning (pointcut="conflictTest(agent)", 
                   returning="conflictFree") 
  public void afterConflictTest(Agent agent,  
                       Boolean conflictFree){ 
    if (conflictFree)   
      agent.incrementStability(); 
    else  
      agent.resetStability(); 
  } 
} 

Fig. 5. AspectJ5 Implementation of Vertex Stability Monitoring Aspect 

Figure 5 contains the AspectJ5 implementation of the stability monitoring aspect. 
AspectJ5 is an annotation-based version of AspectJ [2]. The @DeclareParents anno-
tation performs static crosscutting by altering Vertex to subclass AgentImpl and to im-
plement the Agent interface. The pointcut intercepts the ColorStrategy.correctColor 
method execution and binds the variable agent to the method’s vertex parameter. This 
variable is then passed as a parameter to the afterConflictTest() advice method, which 
is executed after the ColorStrategy.correctColor method. Note that static crosscutting 
makes it possible for a Vertex object to be assigned to an Agent variable. The advice 
method’s conflictFree parameter is bound to the value that was returned after execu-
tion of the ColorStrategy.correctColor method. 

Figure 6 contains an aspect that implements stability monitoring for the Sudoku 
puzzle; the Advice Diagram is omitted. SudokuCell.checkCell tests if a cell’s number 
is unique among the other cells in its row, column or block. The result is stored in the 
isUnique instance variable. Static crosscutting alters the SudokuCell class to extend 
AgentImpl. The pointcut captures the execution of SudokuCell.checkCell, binding 
agent to the method’s self reference. While the aspect in Figure 5 was able to bind 
both advice parameters, the aspect in Figure 6 can only bind the agent parameter at 
the method execution join point. The result of the conflict test is stored in the instance 
variable isUnique, which is not accessible through a join point signature or return 
value. The binding of conflictFree is performed within the advice method body. 



 Balancing Quantification and Obliviousness in the Design of AO Frameworks 323 

 

@Aspect  
public class SudokuStabilityMonitoring { 
  @DeclareParents(value="SudokuCell",  
                  defaultImpl=AgentImpl.class) 
  public Agent agent;  

  @Pointcut("execution(void SudokuCell.checkCell()) 
             && this(agent)") 
  void conflictTest(Agent agent) {} 

  @AfterReturning(pointcut="conflictTest(agent)") 
  public void afterConflictTest(Agent agent) { 
    Boolean conflictFree=((SudokuCell)agent).isUnique(); 
    if (conflictFree)   
       agent.incrementStability(); 
    else  
       agent.resetStability(); 
  } 
} 

Fig. 6. Sudoku Stability Monitoring Aspect 

2.2   An Aspect-Oriented Framework for Stability Monitoring 

The aspects presented in Figures 5 and 6 both define a custom implementation for a 
particular swarm application. Each aspect binds a specific application class to its new 
super-class, defines a unique pointcut for referencing the conflict test method, and 
implements unique bindings for the variables used in the advice method. The aspects 
are examples of the singleton pattern and are not reusable. AOP frameworks are tradi-
tionally structured using the template advice design pattern [6]. A template advice 
method is implemented in an abstract aspect that defines an abstract pointcut. The ad-
vice method invokes abstract methods for the parts of the algorithm that vary. 

Figure 7 contains an AOP framework for stability monitoring. The abstract aspect 
StabilityMonitoring contains a template advice method to update agent stability. The 
advice method supports the flexible binding of the agent and conflict result by invok-
ing the abstract methods getAgent and getResult. Both methods take a reference to the 
join point as a parameter in order to allow join point specific bindings. 

Figure 7 also contains a concrete aspect VertexStabilityMonitoring that extends the 
abstract aspect for the vertex coloring application. VertexStabilityMonitoring over-
rides the abstract pointcut to intercept the ColorStrategy.correctColor method execu-
tion. The concrete aspect also overrides the role binding methods getAgent() and 



324 L. Seiter 

getResult(), which will be called from the inherited advice method upon execution of 
ColorStrategy.correctColor. VertexStabilityMonitoring also defines an inter-type dec-
laration to extend the Vertex class. The Sudoku application would require the imple-
mentation of a separate concrete aspect, which is omitted. 

@Aspect  
public abstract class StabilityMonitoring { 
  @Pointcut("") 
  public abstract void conflictTest() {} 

  @AfterReturning(pointcut="conflictTest()", 
                  returning="jpReturn") 
  public void afterConflictTest(JoinPoint jp,  
          Object jpReturn)  { 
    Agent agent = getAgent(jp); 
    Boolean conflictFree = getResult(jp,jpReturn); 
    if (conflictFree)   
      agent.incrementStability(); 
    else  
      agent.resetStability(); 
  } 
  public abstract Agent getAgent(Joinpoint jp); 
  public abstract Boolean getResult(Joinpoint jp,  
                  Object jpReturn); 
} 

@Aspect  
public class VertexStabilityMonitoring  
     extends StabilityMonitoring { 

  @DeclareParents(value="Vertex",  
                  defaultImpl=AgentImpl.class) 
  public Agent agent;  

  @Override        
  @Pointcut("execution( 
          Boolean ColorStrategy.correctColor(Vertex))") 
  public void conflictTest() {} 

  @Override 
  //bind to ColorStrategy.correctColor 1st parameter 
  public Agent getAgent(Joinpoint jp)  
  { return (Agent) jp.getArgs()[0]; } 
     
  @Override  
  //bind to ColorStrategy.correctColor return value 
  public Boolean getResult(Joinpoint jp, 
                           Object jpReturn)  
  { return (Boolean) jpReturn; } 
} 

Fig. 7. AOP Framework Design for Stability Monitoring 



 Balancing Quantification and Obliviousness in the Design of AO Frameworks 325 

The framework shown in Figure 7 demonstrates little improvement in code reuse. 
Each swarm application still requires a concrete aspect for the join point specific 
bindings. Figure 7 also demonstrates an issue involving the modularity and maintain-
ability of AOP frameworks. Code is considered modular if it is textually local, if there 
is a well-defined interface that describes how it interacts with other components, and 
if the interface is an abstraction of the implementation in that it is possible to make 
changes to the implementation without violating the interface. The concrete Vertex-
StabilityMonitoring aspect in Figure 7 violates these conditions. Its pointcut is fragile 
in that a change to the ColorStrategy.correctColor signature may require pointcut 
maintenance. The agent and conflictFree bindings are also fragile. 

3   A Reusable Aspect-Oriented Component 

This section presents an extension to the AspectJ5 language that supports the poly-
morphic binding of advice method parameters. The solution relies on Java annotations 
to serve as the interface between an aspect and an application. 

@Retention(RetentionPolicy.RUNTIME) 
@Target(ElementType.METHOD) 
public @interface ConflictTest { 
  String agent(); 
  String conflictFree(); 
} 

Fig. 8. @ConflictTest annotation 

public class Sudokuell {     
   …     
   @ConflictTest(agent=”this”, 
                 conflictFree=”this.isUnique()”) 
   public void checkCell() { … } 
} 
public  class ColorStrategy {     
   …     
   @ConflictTest(agent=”vertex”,  
          conflictFree=”return”) 
   public Boolean correctColor(Vertex vertex) { … } 
} 

Fig. 9. Adding the @ConflictTest annotation to the application methods 

The @ConflictTest annotation in Figure 8 modularizes the crosscutting references 
required for implementing stability monitoring. A Java annotation is similar to an in-
terface in that it declares a set of method signatures. However, an annotation can be 
used to extend methods and other program elements with additional type information. 
The @ConflictTest annotation will be added to each conflict method. Its members  
 



326 L. Seiter 

will be assigned values to reference the agent and test result. Java restricts the return 
type of an annotation member to primitive types, String, Class, enumerations, or other 
annotations. Therefore, the @ConflictTest members will store a string to be evaluated 
at runtime using the join point’s context to produce a reference to the agent and result. 

Figure 9 demonstrates how to add the @ConflictTest annotation to a method. The 
object that represents the agent in the SudokuCell.checkCell method is accessible 
through the method self reference, thus the agent member is set to “this”. The result 
of the test is stored in the instance variable, the conflictFree member is therefore set 
to “this.isUnique()”. The agent in the ColorStrategy.correctColor method is refer-
enced by the parameter, thus agent is set to “vertex”. The result of the test is returned 
out of the method, the conflictFree member is therefore assigned the value “return”. 

@Aspect 
public  class StabilityMonitoring {     
  @Pointcut("execution (@ConflictTest * *.*(..))") 
  void conflictTest () {} 

  @AfterReturning(pointcut="conflictTest()",    
                  returning="jpReturn") 
  public void afterConflictTestExecution( 
        @Mixin(AgentImpl.class) 
        @AnnotationRef("ConflictTest.agent()") 
        Agent agent, 

        @AnnotationRef("ConflictTest.conflictFree()") 
        Boolean conflictFree )  { 

      if (conflictFree)    
    agent.incrementStability(); 
      else  
  agent.resetStability(); 
  } 
} 

Fig. 10. Reusable Stability Monitoring Aspect 

Figure 10 contains the implementation of a single reusable aspect for stability 
monitoring. AspectJ5 supports join point matching based on Java annotations [2]. The 
pointcut captures the execution of all @ConflictTest annotated methods. However, the 
pointcut is still not powerful enough to bind the advice parameter, as the binding differs 
per join point. Figure 10 introduces two new annotations @Mixin and @AnnotationRef 
that extend AspectJ5 to support polymorphic advice parameters. @AnnotationRef dy-
namically binds an advice parameter by evaluating the annotation member at the join 
point. JEXL is a tool that evaluates a Java string within a given context [7], it can be 
used to evaluate the expression contained in the annotation in order to produce an object 
reference. The @Mixin annotation performs static crosscutting. Each object referenced 
by the agent parameter will be extended with the AgentImpl functionality. 

 



 Balancing Quantification and Obliviousness in the Design of AO Frameworks 327 

Figure 11 depicts the quantified, polymorphic references utilized by the aspect. 
The pointcut binds to multiple @ConflictTest methods. The advice parameters bind to 
local context through different references per join point. The @Mixin annotation 
wraps multiple classes with new structure and behavior. 

 

Fig. 11. Polymorphic context reference and role extension 

What does it take to reuse this aspect in a new application?  The programmer simply 
adds the @ConflictTest annotation to the appropriate application method. The annota-
tion can either be added directly to the method as shown in Figure 9, or the annotation 
can be added by an aspect that contains annotation declarations, shown in Figure 12. 
The annotation declarations add the @ConflictTest annotation to the application meth-
ods without altering the application source code, thus supporting application-level 
obliviousness. However, modularity and maintainability are negatively impacted since 
the annotation declarations directly reference the application method signatures. The 
approach from Figure 9 is preferable. It may also require maintenance if the signature 
changes, however, the changes are local and potentially easier to automate. 

declare @method :  
public * SudokuCell.checkCell(..) :     
@ConflictTest(agent="this", conflictFree="this.isUnique()"); 

 

declare @method :  
public * ColorStrategy.correctColor(Vertex) :     
@ConflictTest(agent="vertex", conflictFree="return"); 

Fig. 12. AspectJ Annotation Declaration 

An additional question to consider is how the addition of the @ConflictTest anno-
tation to an application method differs from making a direct call to a library method. 
First of all, the @ConflictTest annotation is part of the method signature rather than a 
method call in the method body. This allows the method body to remain consistent 
with implementing the primary application concern. The code related to the crosscut-
ting concern is encapsulated as an annotation on the method signature, which makes 
crosscutting part of the explicit interface of the method. Note also that there may be 
numerous aspects that crosscut @ConflictTest annotated methods. Static crosscutting 



328 L. Seiter 

defined by the @Mixin annotation prevents typing issues that may arise with an ex-
plicit call to a library method. Finally, the crosscutting class model is not tangled into 
the primary class model and issues with multiple inheritance are avoided. 

4   Related Work 

Obliviousness was marketed as a key property when AOP was first proposed. It was 
argued that designers could develop a software component without requiring knowl-
edge of how the component might be integrated with an aspect. However, the lessons 
learned by the software community over the past several years have shown that 
obliviousness does not necessarily improve the software development process and in 
fact may lead to programs that are difficult to develop, understand and evolve. 
Obliviousness prevents a programmer from understanding how simple program modi-
fications may impact existing aspects, leading to inconsistencies during maintenance. 

Several researchers have proposed the use of explicit crosscutting interfaces as a 
means of restoring modularity and reusability in AOP. Each proposal involves some 
reduction of obliviousness. Kiczales and Mezini propose aspect-aware interfaces to 
describe how aspects and non-aspects crosscut [8]. Aspect-aware interfaces update the 
traditional model of interfaces to include information concerning how a particular 
pointcut affects the class model. The approach computes aspect dependencies and 
shows the dependencies as annotations on the explicit interfaces of application meth-
ods that are crosscut by an aspect.  

XPIs (Crosscut Programming Interfaces) represent another approach to improving 
modularity in AOP systems [5]. Their goal is to allow for separate and parallel evolu-
tion of aspects and advised code by decoupling aspect code from the unstable details 
of advised code. Unlike a regular interface that abstracts a procedure, an XPI abstracts 
a crosscutting behavior. The pointcut itself is abstracted to an XPI rather than embed-
ded directly into an aspect. The XPI also defines required and provided obligations, 
thus serving as a contract between aspect and advised code.  

Kulesza et al present a model for improving extensibility in frameworks through a 
mechanism called Extension Join Points (EJPs) [9]. EJPs define a contract between 
the framework classes and a set of aspects that extend the framework. The emphasis 
with EJPs is their use in documenting the hotspots in a framework, exposing a set of 
events for crosscutting composition and supporting the implementation of optional 
features in a framework through the definition of predefined execution points.  

The model of polymorphic advice method parameters that has been presented in 
this paper goes beyond the approaches of aspect-aware interfaces, XPIs and EJPs to 
abstract not only the pointcut-related interfaces but also the context-related interfaces 
that are required by the aspect advice. 

5   Conclusion 

Aspect-oriented programming is a promising new technique for encapsulating crosscut-
ting concerns. However, it can be challenging to implement aspect components that are 
adaptable to different application contexts. In this paper, Java annotations were pre-
sented as the adaptive connector between software components. The annotation serves 



 Balancing Quantification and Obliviousness in the Design of AO Frameworks 329 

to clearly define the boundary between the aspect and the application, across which con-
trol and data flow. AspectJ5 has been extended with two annotations, @AnnotationRef 
and @Mixin, which together support polymorphic advice parameters. This allows the 
programmer to develop aspects that are reusable in a variety of applications. The modu-
larity of the aspect and application code is also improved when compared to a tradi-
tional AOP framework implementation. It can be argued that the direct addition of an 
annotation to an application method causes a reduction in application-level oblivious-
ness. However, it also leads to the development of reusable, modular aspects. 

Acknowledgements 

Peter Kovacina, Matthew Kucera and Lester Eliazo developed an annotation processor 
to transform an aspect that contains @AnnotationRef bindings into one that utilizes 
JEXL to evaluate and bind the advice parameters. The tool also transforms an aspect 
that uses the @Mixin annotation into one that relies on wrapper objects to simulate the 
static crosscutting. These three outstanding undergraduate students were supported by a 
Huntington/Codrington Foundation scholarship. 

References 

1. Aldrich, J.: Open Modules: Modular Reasoning about Advice. In: Black, A.P. (ed.) 
ECOOP 2005. LNCS, vol. 3586, pp. 144–168. Springer, Heidelberg (2005) 

2. AspectJ, http://www.eclipse.org/aspectj/ 
3. Filman, R., Friedman, D.: Aspect-Oriented Programming is Quantification and Oblivious-

ness. In: Workshop on Advanced Separation of Concerns, OOPSLA 2000, ACM, New 
York (2000) 

4. Grassi, W., Sindico, A.: UML Modeling of Static and Dynamic Aspects. In: Nierstrasz, O., 
Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, Springer, Hei-
delberg (2006) 

5. Griswold, W., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., Rajan, H.: Modular 
Software Design with Crosscutting Interfaces. IEEE Software 23(1), 51–60 (2006) 

6. Hanenberg, S., Schmidmeier, A.: Idioms for Building Software Frameworks in AspectJ. 
In: AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software 
(2003) 

7. JEXL, http://commons.apache.org/jexl/ 
8. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning. In: Pro-

ceedings of the 27th international Conference on Software Engineering, ICSE 2005, St. 
Louis, MO, USA, pp. 49–58. ACM, New York (2005) 

9. Kulesza, U., Alves, V., Garcia, A., de Lucena, C., Borba, P.: Improving Extensibility of 
Object-Oriented Frameworks with Aspect-Oriented Programming. In: Morisio, M. (ed.) 
ICSR 2006. LNCS, vol. 4039, pp. 231–245. Springer, Heidelberg (2006) 

10. Seiter, L., Palmer, D., Kirschenbaum, M.: An aspect-oriented approach for modeling self-
organizing emergent structures. In: Proceedings of the 2006 international Workshop on 
Software Engineering For Large-Scale Multi-Agent Systems, SELMAS 2006, Shanghai, 
China, pp. 59–66. ACM, New York (2006) 

11. Steimann, F.: The paradoxical success of aspect-oriented programming. SIGPLAN Not 
41(10), 481–497 (2006) 



Lightweight, Semi-automated Enactment of
Pragmatic-Reuse Plans

Reid Holmes and Robert J. Walker

Laboratory for Software Modification Research
Department of Computer Science

University of Calgary
Calgary Alberta, Canada

Abstract. Reusing source code in a manner for which it has not been designed
(which we term a pragmatic-reuse task) is traditionally regarded as poor practice.
The unsystematic nature of these tasks increases the likelihood of a developer
pursuing one that is infeasible or choosing not to pursue a feasible one. In
previous work, we demonstrated that these risks can be mitigated by providing
support to developers to help them systematically investigate and plan pragmatic-
reuse tasks. But planning is only a small part of performing a pragmatic-reuse
task; to enact a plan, the developer would have to manually extract the code
they want to reuse and resolve any errors that arise from removing it from its
originating system. This paper describes an approach that semi-automates the
process of pragmatic-reuse plan enactment, automatically extracting the reused
source code and resolving the majority of compilation errors for the developer
through lightweight (i.e., computationally simple but analytically unsound)
transformations. By reducing the number of low-level compilation issues (which
are typically trivial but copious) that the developer must resolve, they are able to
focus on the higher-level semantic and conceptual issues that are the main barrier
to the successful completion of the reuse task. The efficacy of our approach
to save developer effort is evaluated in a small-scale, controlled experiment
on non-trivial pragmatic-reuse tasks. We find that our approach improves the
likelihood of a pragmatic reuse task being successful, and decreases the time
required to complete these tasks, as compared to a manual enactment approach.

Keywords: Pragmatic software reuse, lightweight source code transformations.

1 Introduction

As developers write code, they encounter situations where the functionality they are de-
veloping is familiar to them; either they have developed something similar before, or
they know of some existing software that provides similar functionality [1]. Unfortu-
nately, the existing functionality is often not designed in a way that permits its reuse in a
black-box manner (e.g., as a framework, component, or product line) [2]. The developer
is then left with few choices: re-implement the functionality, which is expensive and does
not leverage existing mature code; re-modularize the existing code, which can be expen-
sive and may not make sense for the original system; or to reuse the existing code in an

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 330–342, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Lightweight, Semi-automated Enactment of Pragmatic-Reuse Plans 331

ad hoc copy-and-modify process, which can lead to poor decisions being made [3,4].
Copy-and-modify is often the pragmatic choice for software reuse in real scenarios.

Industrial developers undertake pragmatic-reuse tasks as a means to save time and
leverage the testing effort put into existing source code; however, traditional approaches
to pragmatic reuse can lead the developer to make poor decisions: they can commit too
early to completing infeasible tasks; or they can avoid feasible reuse tasks due solely
to superficial complexities. In previous research we addressed the shortcomings of tra-
ditional pragmatic-reuse approaches by supporting a lightweight means for simultane-
ously investigating and planning pragmatic-reuse tasks [5]. While planning can greatly
increase the developer’s comprehension of a pragmatic-reuse task, a plan remains an
abstract artifact; for a plan to be useful, it must be followed (“enacted”) to success-
fully complete the pragmatic-reuse task. Without tool support to enact pragmatic-reuse
plans, three shortcomings remain: (1) the developer has to manually locate and integrate
reused source code; (2) the abundance of low-level compiler errors during integration
can obscure more complex high-level semantic and conceptual issues; and (3) investi-
gating different options in the reuse plan can be expensive due to the costs of repeatedly
manually modifying the source code.

Previous research has examined means for automatically or semi-automatically mak-
ing adaptive modifications to source code. Much research requires that the source being
adapted must be designed for reuse [6,7,8,9] or at least be compilable before adapta-
tion [10,11]; these requirements are not met in pragmatic-reuse scenarios. Some work
has considered means for automatic adaptation, but requires that the adapted entities
be formally specified [12,13]; such formal specifications are not typically available in
pragmatic-reuse contexts.

While pragmatic-reuse plans can help the developer to understand the reuse task at
a high-level, it removes him from the realities of the source code; without enacting the
plan it is difficult to tell if a decision in the plan makes the reuse task infeasible. To
reduce the effort needed to enact a pragmatic-reuse plan, we have designed an approach
for the semi-automatic enactment of these plans. Key to our approach is the applica-
tion of lightweight (i.e., computationally simple but analytically unsound) transforma-
tions to the reused source code. We have implemented this approach in a tool called
Procrustes1, a plug-in to the Eclipse integrated development environment (IDE)2. Pro-
crustes copies the code to be reused to the developer’s project, and then modifies the
code to be reused to minimize the number of dangling references the developer must
inspect and correct; dangling references that cannot be transformed easily are flagged
for the developer’s attention. By semi-automating the enactment phase, the developer
can instantly receive feedback on the implications of the plan and focus on the higher-
level semantic problems that may inhibit the reuse task. This feedback loop makes it
practical to quickly consider alternative decisions for a particular reuse task, thereby
allowing the developer to create a higher-quality result.

We have performed an initial evaluation of our approach through two investigations
into pragmatic-reuse tasks on two medium- to large-scale systems: a comparative case

1 The name comes from a figure in Greek mythology who would invite passersby to lie in a bed,
whereupon he would force them to fit by stretching or amputation.

2 http://eclipse.org (v3.2.1).



332 R. Holmes and R.J. Walker

study to determine the minimum necessary effort for these tasks; and a controlled ex-
periment involving 8 developers enacting pragmatic-reuse plans manually and with our
semi-automated approach.

The remainder of the paper is structured as follows. Section 2 provides additional
background about pragmatic-reuse plans. Section 3 describes our lightweight approach
for semi-automating the enactment of pragmatic-reuse plans. Related work is consid-
ered in Section 4. Our evaluation is presented in Section 5. Remaining issues are dis-
cussed in Section 6.

Our previous work contributed a method for investigating and planning pragmatic-
reuse tasks. In contrast, this paper contributes a lightweight approach for the
semi-automatic enactment of pragmatic-reuse plans; this is evaluated by comparing the
success rates of pragmatic-reuse tasks with and without our lightweight approach.

2 Background: Pragmatic-Reuse Plans

Developers currently perform pragmatic reuse tasks manually. They identify some frag-
ment of source code they want to reuse and integrate with their project. They then suc-
cessively traverse through compiliation errors that have arisen and resolve them one at
a time (integrating more code as necessary). Unfortunately, for large reuse tasks it is
difficult to tell at the outset if the task will be successful. We introduced the concept
of the pragmatic-reuse plan to help developers understand the scope of pragmatic-reuse
tasks before the investment of integrating the reused code [5].

A pragmatic-reuse plan consists of a list of tagged program elements. Classes, meth-
ods, and fields can be marked as as accepted (“I want to reuse this code”), rejected
(“I don’t want to reuse this code”), or remapped (“I want to redirect dependencies on
this code to be on something within my own system”). Special cases exist for injecting
code into classes and extracting fields by reusing only specific fields from a class.

3 Procrustes: Semi-automating Enactment

Procrustes bridges the gap between the conceptual intent of a pragmatic-reuse plan and
the realization of the task. To do this, Procrustes copies the source code fragments that
the developer intends to reuse from the originating project into the target project (see
Section 3.1) according to the pragmatic-reuse plan. Using the plan, Procrustes integrates
the reused code with the target project by resolving the dangling references that arose
from removing the code from its originating environment (see Section 3.2).

3.1 Extraction

After the developer activates Procrustes (by pressing the “enact plan” button in the
IDE), it locates all of the source code corresponding to accepted nodes in the reuse
plan and first copies this code into the target project. The original package hierarchy is
maintained within the extracted code, for ease of comprehension.

After Procrustes has copied the code into the target project, dependencies between
the reused classes will remain valid as the package structure was maintained. Any
dependencies to structural entities outside those being reused would normally cause



Lightweight, Semi-automated Enactment of Pragmatic-Reuse Plans 333

compilation problems; however, the integration portion of Procrustes resolves many of
these (see Section 3.2).

3.2 Integration

During this phase, the source code that has been migrated from the original system to
the target system must be manipulated to resolve any compilation problems that have
arisen. When source code is removed from the context for which it was written and
placed into a foreign environment, many of its dependencies can be unfulfilled. The
unfulfilled dependencies in the reused code are manifested as dangling references to
classes, methods, and fields that were not reused (and do not exist in the target project).

Using the model that represents the pragmatic-reuse plan, Procrustes can pre-
compute each of the changes that the tool should perform to repair many dangling
references. The integration process proceeds in four main steps:

Managing Source Code Additions. The code addition step adds new code to those
entities previously migrated to the target project in Section 3.1. There are two cases that
must be handled: code injection, and field extraction. For code injection, any fragment
provided by the developer is inserted into its target class (as specified in the reuse plan).

For field extraction, any fields in the plan that have been marked for extraction are
copied from the class in which they were declared into the target class specified in the
pragmatic-reuse plan. Moving the field only updates its declaration, not its references
in the reused code (this happens in the next step). Again, the import statements are also
updated to reflect this addition to the target class.

Managing Dangling References. The management of dangling references is the most
complex step in the integration phase. Two primary classifications of dangling refer-
ences are managed: (1) references to fields, calls to methods, and references to super-
types that were rejected in the reuse plan; and (2) calls to methods and referenced fields
that have been injected, extracted, or remapped in the reuse plan.

Procrustes searches each accepted source element for dependencies on other elements
that have been rejected. If a dependency on a rejected field or method is found, it is
managed by commenting-out the entire statement containing code corresponding to the
dependency within the accepted code. Procrustes comments-out rejected dependencies,
rather than remove them completely, rather than remove them completely, as their details
could still be informative to the developer. These comments are accompanied with a tag
to indicate that the change was made by Procrustes. This also allows the developer to
easily locate each change to the source made by Procrustes using traditional search tools.
For the sake of simplicity, Procrustes rejects field references and method calls only at the
statement level; despite the inherently unsound nature of such a lightweight approach to
transformations, in practice we have found it to be effective (Section 5).

If the pragmatic-reuse plan has reused a class but not some subset of its supertypes,
the tool must remove references to those supertypes. This often occurs as developers
trim the functionality they are interested in from an inheritance hierarchy. Any num-
ber of supertypes can be removed. If the subclass was dependent on a method within
a rejected supertype this would be shown as a dependency between a method in the



334 R. Holmes and R.J. Walker

subtype and a method on the supertype during the planning process. This dependency
would have been resolved at the beginning of this step.

Finally, any accepted element with a structural dependency that has been remapped is
handled. These cases are simpler than in the rejected-element case as code does not dis-
appear; it is simply redirected. This step handles 5 cases: calls to injected and remapped
methods and references to injected, extracted, and remapped fields.

Managing Unnecessary Code. This step removes methods and fields marked as re-
jected in the reuse plan that are declared within accepted classes and interfaces. For
code readability, rejected fields and methods are completely removed from the source
code by removing them from their containing class, rather than just being commented
out. The tool only needs to remove methods and fields that are children of classes that
have been accepted, i.e., if a type is completely rejected or remapped Procrustes does
not need to delete any code as it would not have been integrated to the target system.

Finalizing Source Code Modifications. Each of the changes made by the three pre-
vious steps were made to an intermediate representation of the code, not directly to its
text. This separation minimizes the chances that one change will cause another alter-
ation to fail. After all the steps are complete, Procrustes applies the changes to the files
and writes them to disk, collecting statistics about the scope of the changes it has made.

3.3 Implementation

Procrustes is implemented as an Eclipse plug-in. By creating the tool as a plug-in we are
able to leverage many of the features that Eclipse provides for parsing, compiling, and
manipulating Java files. Each of the nodes in the reuse plan matches a specific structural
element in Eclipse’s Java abstract syntax tree (AST). All of our changes are recorded
using the Eclipse ASTRewrite class. This class aggregates the changes made during
each of the steps of the integration phase; the source files are all changed and written to
disk only at the end of this phase.

4 Related Work

Previous work in a variety of areas bears similarity to the problem we address; however,
none meets all the requirements for (semi-) automating the enactment of pragmatic-
reuse plans.

Most reuse literature emphasizes designing for reuse, for example, in object-
oriented programming [14], frame-based reuse [7], domain-specific language-based
approaches [6], and component-based approaches [8,9]. Such approaches are inappro-
priate in our context, as pragmatic reuse entails situations where the original design did
not anticipate the desired reuse scenario.

Transformation-based approaches to reuse were prevalent in the 1980s, for example,
that of Feather [10]. Such approaches were based on the notion of formally correct re-
finement, thus requiring compilable programs and (usually) formal specifications; nei-
ther is available in our context. Jackson and Rinard recognize the continuing value of
unsound analyses [15], for both their usefulness and ease of efficient implementation.



Lightweight, Semi-automated Enactment of Pragmatic-Reuse Plans 335

Several systems have been developed to identify reusable components. Lanubile and
Visaggio developed a technique based on program slicing to identify reusable source
code [16]. The CARE system [17] identifies and extracts reusable components using a
metrics-based approach; the applicable components must have no or few external de-
pendencies. These systems do not allow the developer to specify which detailed entities
are to be reused, or how to deal with problematic dependencies.

Various approaches attempt to adapt code for use in a novel context. The Adapter
object-oriented design pattern [11] adapts classes or objects to conform to a required
interface, but maintains all the dependencies of the original classes or objects; in our
context, we need to be able to eliminate or replace such dependencies. Approaches
like that of Gouda and Herman [12] and of Yellin and Strom [13] automatically adapt
components to new contexts; however, they require complete, formal specifications to
operate that are not typically available or appropriate for pragmatic-reuse tasks.

5 Evaluation

The intent of our approach is to greatly reduce the effort required to enact a pragmatic-
reuse plan. By reducing this effort, developers can better judge the merits of their reuse
tasks to maximize their chances of having desirable outcomes. To evaluate Procrustes
we set out to answer two questions: (1) How much effort can semi-automating the en-
actment of pragmatic-reuse plans save developers? (2) Does semi-automating the enact-
ment of pragmatic-reuse plans affect the outcomes of pragmatic-reuse tasks performed
by developers? Each question was addressed with its own evaluation.

In both evaluations, “completion” was defined as the successful execution of a test
suite that we provided for the purpose. One test suite was implemented as an Eclipse
plug-in, while the other was a standalone application; we henceforth refer to both as
test harnesses.

5.1 Task Descriptions

Both evaluations used the same two tasks. Each of these tasks involved extracting spe-
cific functionality from an existing system and integrating it into a new system. Each
task operated on a different open-source Java system from a different domain.

Metrics Lines-of-Code Calculator. The Metrics Eclipse plug-in3 can compute 23 dif-
ferent metrics (e.g., lines of code, cyclomatic complexity, efferent coupling, etc.) for
resources inside Eclipse projects. This plug-in contains 229 classes comprising 14.5
thousand lines-of-code (kLOC). The goal of this task was to reuse the lines-of-code
(LOC) calculator from this project; however, the system was not designed to enable
individual metrics to be reused without the remainder of the Metrics plug-in.

The reuse plan for this task involved reusing portions of 8 classes. Successful com-
pletion of this task involved reusing 392 LOC. For the task to be a success, the reused
code had to compute the LOC for every class in every project in the Eclipse workspace
when activated by the test harness.

3 http://metrics.sf.net v1.3.6.



336 R. Holmes and R.J. Walker

Azureus Network Throughput View. Azureus4 is a client application for the Bit-
Torrent peer-to-peer file-sharing protocol. Azureus contains 2,257 classes comprising
221 kLOC. It contains a view that visualizes its network throughput for the user. The
goal of this task is to extract this network throughput view from Azureus and integrate
it into a new system. This feature was not designed to be reused outside of Azureus.

The reuse plan for this task involved reusing portions of 6 classes. Successful com-
pletion of this task involved reusing 366 LOC. To succeed at the task, the reused code
had to be able to correctly display a data set provided in the test harness.

5.2 Analysis of Minimum Required Effort

Our first evaluation considered how much effort Procrustes can save a developer by
semi-automating the enactment of a pragmatic-reuse plan. We performed both tasks both
manually and using Procrustes. The number of compilation errors present after copying
all of the required code (in the manual case) or pressing the “enact plan” button in the
Procrustes-supported case is given in Table 1. These numbers are the first indicator to
the developer of the amount of work facing them before they can complete the task.

Table 1. Compilation errors for each task and treatment

Case Procrustes Manual Error reduction
Metrics 3 62 95.2%
Azureus 11 32 65.6%

Compilation errors alone are not always a good indicator of required effort. Often,
making one small change in the source code can remedy (or create) several errors. To
get a true sense of the minimum amount of effort the developer would need to expend
to successfully complete each reuse task, we investigated each task in terms of “edits”.
An edit represents a single conceptual change the developer makes to the source code.
The minimum number of edits required to successfully complete each task with each
treatment is given in Table 2.

Table 2. “Edits” required for each task and treatment

Case Procrustes Manual Edit reduction
Metrics 2 60 96.7%
Azureus 4 25 84.0%

Some edits require more thought and investigation on the part of the developer to re-
solve than others. These difficult edits arise due to conceptual mismatches between the
original and target systems [2]. For the Metrics task, only one of the edits represented
a conceptual mismatch that arose from removing the reused code from the system for
which it was designed. Three edits in the Azureus task represented conceptual mis-
matches; these were common between the two treatments. While Procrustes does not

4 http://azureus.sf.net v2.4.0.1.



Lightweight, Semi-automated Enactment of Pragmatic-Reuse Plans 337

resolve any of the conceptual mismatch errors, it helps the developer to quickly identify
them by resolving all of the trivial compilation errors that occlude them. This difference
is especially evident when a developer repeatedly iterates on a reuse plan.

5.3 Task Effectiveness Experiment

Our second investigation sought to determine if developers performing pragmatic-reuse
tasks had better outcomes using Procrustes. We performed a controlled experiment
with eight developers. Four of these were industrial developers (I1 through I4) and
four were software engineering graduate students (G1 through G4). The participants
had between 6 years (an industrial developer) and 12 years of experience (also an in-
dustrial developer). Each participant was randomly assigned a task–treatment pairing.
Each task–treatment pairing was completed by two graduate students and two indus-
trial developers. Each participant used Procrustes for one task and performed the other
task manually. We created a reuse plan for each task and provided identical versions for
each treatment. A time limit of one hour was set for each task; we chose this time limit
as it seemed like a reasonable amount of time for a developer to invest in this kind of
task. We recorded whether or not the participants succeeded or failed for each task, how
long they spent performing the task, and collected their final code for later analysis. Af-
ter completing both tasks the participants completed a follow-up questionnaire (see the
website cited earlier for details).

Fig. 1. Results of the task effectiveness experiment. Green/hatched bars indicate success.
Red/solid bars indicate failure.

The results of the experiment are shown in Figure 1. The figure depicts successful
task–treatment pairings in green (diagonal hatching in greyscale). Those task–treatment
pairings that were failures are indicated in red (solid in greyscale). The graph clearly
shows that the participants successfully completed more tasks using Procrustes (8 out
of 8) than with the manual treatment (4 out of 8). It is also clear that, for these tasks,



338 R. Holmes and R.J. Walker

developers were able to complete the tasks in less time using Procrustes than when
undertaking them manually.

Manual Treatment. The four participants who manually enacted the Metrics LOC
reuse task were the least successful. By examining their resulting code and reading
their comments in the questionnaire, it became clear that they knew they had a problem
to fix, but they did not know where this problem was. At the outset of this manual task,
each participant (I2, I4, G1, G3) had 62 compilation errors to resolve; in the process of
resolving these errors, they seemed to become disoriented. While each of them ended up
with code that compiled, only I2 successfully completed the task (in 47 minutes). One
of the participants became so frustrated with this task that after 24 minutes he gave up.
One of the participants who failed at this task (I4) reported, “The manual approach was
mostly drone work; it took longer to get the target project into a state where interesting
problems could be solved.” Even I2, who was successful, stated, “[The manual task was]
not hard, very tedious though. I was sitting there going ‘this should be automated.’”

The other 4 participants undertook the manual version of the Azureus task. Only one
of these developers (I1) failed to complete the task (after 60 minutes); the rest managed
to finish in an average of 40 minutes.

Automated Treatment. Each of the participants who undertook the Metrics LOC task
using Procrustes managed to successfully complete the task (in an average of 19 min-
utes). In the questionnaires, these developers mentioned that they were able to concen-
trate on the 3 compilation errors that remained after Procrustes ran. Since two of these
errors were trivial, they were able to focus on the single remaining error (which was a
conceptual mismatch). While this error was tricky to solve, each of them was able to
get the code to work successfully with the test harness.

All the participants also completed the Azureus task using Procrustes (in an aver-
age of 10 minutes). These developers did not seem to have any trouble changing the
reused code to use the specific fields for blue rather than the blues array. For this task,
I4 said, “There where still some syntactic mismatches, but what I found was that the
problems that remained were more directly related to the actual misalignments between
use contexts; they were more directly related to the reuse I was trying to achieve.”

5.4 Lessons Learned

The first evaluation demonstrated the amount effort that Procrustes can save the devel-
oper. The second evaluation showed that this savings can translate into an increased rate
of success for pragmatic-reuse tasks. The controlled experiment showed that Procrustes
enabled the developers to quickly locate the conceptual mismatches that were the real
barrier to completing the tasks; these mismatches could not be found by looking at the
reuse plan alone.

6 Discussion

In this section, we consider a number of issues regarding our claims, evidence, and
conjectures about the current work, and where the work should go from here.



Lightweight, Semi-automated Enactment of Pragmatic-Reuse Plans 339

6.1 Does Semi-automating Enactment Matter?

A pragmatic-reuse plan remains an idealization until it is enacted to complete a
pragmatic-reuse task. Semi-automation aids the developer by eliminating the most triv-
ial issues so that the developer can focus on addressing non-trivial problems. In contrast,
Participant G1 failed at the manual treatment of the Metrics task because he could not
resolve the conceptual mismatch between the source and target environments; he re-
ported spending 40 of 60 minutes resolving low-level compilation errors. This pattern
recurred: in all 4 of the unsuccessful manual treatments, the developers were able to get
the code to compile without error; however, in 3 of the 4, the developers also used their
full 60 minutes without completing the task.

We believe this time-savings also matters from an industrial perspective; develop-
ers are only willing to invest a limited amount of time into these kinds of tasks be-
fore building the functionality from scratch. As Participant I2 states, “I wouldn’t use [a
pragmatic-reuse plan] on its own... I don’t care that the model is nice, it’s running code
that counts. The automation provided by Procrustes gives me the bridge I need to make
the model valuable.” And, “[The manual approach] gives me a jigsaw puzzle where I’ve
opened the box and have all the pieces. [Procrustes] gives me a 90% complete puzzle
and I just have to put in the last pieces. It’s what makes the tool usable to me.”

6.2 Do Lightweight Transformations Suffice?

We have developed Procrustes specifically to minimize the number of compilation er-
rors associated with reusing source code that was not designed for reuse. As such, it
applies only the most basic of transformations. Significant conceptual mismatches [2]
will not be repaired by these transformations. However, in our experience we have found
that the vast majority of mismatches encountered are trivial in nature, but copious, and
that the transformations applied by Procrustes suffice to repair these.

As Participant I4 states, “The automatic enactment brought the target project into a
state where I could more immediately start working out the higher-level mismatches
between contexts. The remaining compilation errors were more directly related to these
[higher-level] mismatches. In contrast, the manual enactment involved a lot more itera-
tions of compile/fix and the errors [were] more low-level.”

Using a more complex means of specifying the transformations could allow the en-
actment task to be fully automated. We suspect that the cost of using a fully-expressive
transformation language would be significantly greater than the cost of manual enact-
ment. Procrustes provides an alternative to these two approaches.

6.3 Representativeness of Participants and Tasks

The number of participants was fairly small, at only eight. We have not attempted to
quantify the relative effort of the treatments with statistical significance and have re-
ported times only to give a sense of scale and trends. Half of our participants were in-
dustrial developers and half were experienced graduate students. While there was some
variation between these two groups, the trend in the results is unambiguously in favour
of Procrustes.



340 R. Holmes and R.J. Walker

Our first evaluation also considered the “ideal” developer who could complete her
tasks with the minimum amount of work. While this developer is also not representative,
she does represent the lower-bound that the best developers could strive to achieve. Even
this developer had to perform considerably more work with the manual treatment than
with the semi-automated one.

Only two tasks were performed on two systems. Each of these tasks were non-trivial,
being taken from real development scenarios and not synthesized for the sake of the
research; each involved the reuse of functionality that had not been designed to be
reused in the way we needed. The systems were of medium- to large-scale from two
disparate domains.

For the sake of experimental control, we provided the participants with pragmatic-
reuse plans for their tasks. While this control enabled us to compare the effectiveness
of multiple developers performing the same tasks with different treatments, future eval-
uations will involve developers creating and enacting their own reuse plans.

6.4 Net Cost of Pragmatic Reuse

One might question how much effort must be expended to create or to interpret
pragmatic-reuse plans, and whether this effort would overwhelm the reported benefits
of semi-automated enactment. In our experiment, each pragmatic-reuse plan required
less than 30 minutes to construct by us, despite our lack of experience with the original
systems. The 30 minute investment required to create the plans involved gaining an un-
derstanding of the originating system, something that developers would need to do in
both manual and tool-supported scenarios.

While our evaluation indicates that Procrustes can help with pragmatic-reuse tasks,
going forward we will have to evaluate the relative performance of three different cases:
(1) a developer creating functionality from scratch; (2) a developer manually reusing sim-
ilar functionality from a pre-existing system; and (3) a developer creating a pragmatic-
reuse plan, and enacting it with Procrustes. With such an evaluation, we would like to
gain an insight into the relative merits of tool-supported end-to-end pragmatic-reuse sce-
narios compared to more traditional unanticipated-reuse approaches.

7 Conclusion

This paper has described Procrustes, a tool for semi-automatically enacting pragmatic-
reuse plans. By resolving the bulk of the compilation errors that arise from reusing
a piece of source code out of the context it was designed for, Procrustes allows the
developer to focus their effort on resolving errors that represent conceptual mismatch
between the source and target systems.

We performed two evaluations to determine the efficacy of Procrustes. In the first
evaluation we found that a putative developer doing the least amount of work possible
would have to perform significantly more work to enact a pragmatic-reuse plan man-
ually than with Procrustes. The second evaluation found that participants using Pro-
crustes were far more likely to successfully complete a pragmatic-reuse task (8 out of
8 cases) than those performing the same tasks manually (4 out of 8 cases). Additionally,
in all successful tasks, the use of Procrustes reduced the time needed for the enactment



Lightweight, Semi-automated Enactment of Pragmatic-Reuse Plans 341

process to between 25% and 40% of the times for the manual treatments, on average.
The implication of these studies is that semi-automation can make it feasible for the de-
veloper to iterate on their reuse plan, allowing them to explore the concrete realization
of different plan alternatives, leading to higher-quality reuse plans and more successful
reuse tasks.

Procrustes utilizes computationally simple but analytically unsound transformations
to enact a pragmatic-reuse plan. Because of their simplicity, these transformations are
fast to perform. Despite their lack of soundness, they can effectively filter out trivial
mismatches from the developer’s attention, allowing them to focus on whether and how
to address non-trivial mismatches. The lightweight nature of our approach, coupled with
our appreciation of the needs of the developer, are key to its success.

Acknowledgments

We wish to thank Brad Cossette, Rylan Cottrell, Jonathan Sillito, and the other members
of the Laboratory for Software Modification Research for their helpful comments. This
work was supported in part by the Natural Sciences and Engineering Research Council
of Canada and in part by IBM Canada.

References

1. Sen, A.: The role of opportunism in the software design reuse process. IEEE Transactions on
Software Engineering 23(7), 418–436 (1997)

2. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: Why reuse is so hard. IEEE
Software 12(6), 17–26 (1995)

3. Garnett, E.S., Mariani, J.A.: Software reclamation. Software Engineering Journal 5(3), 185–
191 (1990)

4. Krueger, C.W.: Software reuse. ACM Computing Surveys 24(2), 131–183 (1992)
5. Holmes, R., Walker, R.J.: Supporting the investigation and planning of pragmatic reuse

tasks. In: Proceedings of the International Conference on Software Engineering, pp. 447–
457 (2007)

6. Neighbors, J.M.: Draco: A method for engineering reusable software systems. In: Bigger-
staff, T.J., Perlis, A.J. (eds.) Software Reusability. Concepts and Models of ACM Press Fron-
tier. ACM Press Frontier, vol. 1, pp. 295–319. Addison–Wesley, Boston, United States (1989)

7. Bassett, P.G.: The theory and practice of adaptive reuse. In: Proceedings of the Symposium
on Software Reusability, pp. 2–9 (1997)

8. Mezini, M., Ostermann, K.: Integrating independent components with on-demand remod-
ularization. In: Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 52–67 (2002)

9. Estublier, J., Vega, G.: Reuse and variability in large software applications. In: Proceedings
of the Foundations of Software Engineering, pp. 316–325 (2005)

10. Feather, M.S.: Reuse in the context of a transformation-based methodology. In: Biggerstaff,
T.J., Perlis, A.J. (eds.) Software Reusability. Concepts and Models, vol. 1, pp. 337–359.
Addison-Wesley, Reading (1989)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. In: Adapter design pattern, Addison-Wesley, Reading (1994)



342 R. Holmes and R.J. Walker

12. Gouda, M.G., Herman, T.: Adaptive programming. IEEE Transactions on Software Engi-
neering 17(9), 911–921 (1991)

13. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Transac-
tions on Programming Languages and Systems 19(2), 292–333 (1997)

14. Johnson, R.E., Foote, B.: Designing reuseable [sic] classes. Journal of Object-Oriented Pro-
gramming 1(2), 22–35 (1988)

15. Jackson, D., Rinard, M.: Software analysis: a roadmap. In: Proceedings of the Conference
on The Future of Software Engineering, pp. 133–145 (2000)

16. Lanubile, F., Visaggio, G.: Extracting reusable functions by flow graph-based program slic-
ing. IEEE Transactions on Software Engineering 23(4), 246–259 (1997)

17. Caldiera, G., Basili, V.R.: Identifying and qualifying reusable software components. Com-
puter 24(2), 61–70 (1991)



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 343–346, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Constructing Flexible Application Servers with Off-the-Shelf 
Middleware Services Integration Framework* 

Yan Li, Minghui Zhou∗∗, Donggang Cao, and Lu Zhang 

Software Institute, School of Electronics Engineering and Computer Science, 
Peking University 

Key Laboratory of High Confidence Software Technologies (Peking University), 
Ministry of Education, Beijing 100871, China 

{liyan05,zhmh,caodg,zhanglu}@sei.pku.edu.cn 

Abstract. With the ever increasing complexity and scale of application server 
and the emergence of reliable OTS middleware service components, more and 
more application server vendors are inclined to reuse OTS middleware services 
in the construction of the application server. However, in conventional OTS 
middleware service integration, flexibility is sacrificed by hard coding concrete 
OTS middleware services. This paper proposes CAC (Contract, Adapter, and 
Configuration), a framework to integrate OTS middleware services in a flexible 
way. The evaluations show that our framework effectively reduces the cost of 
application server maintenance and OTS products customization.  

1   Introduction 

The complexity and scale of J2EE application servers are constantly increasing over the 
past decade. Until now, there have already been 23 items in Java Enterprise Edition 5, 
and there are more than 15 complex middleware services constituting the application 
server. Enabling all the features makes it a significant challenge for the vendors to 
evolve the application server completely, correctly and quickly. Meantime, reliable Off-
the-Shelf (OTS) middleware services, also called, OTS products, have been provided by 
some communities, such as Apache Tomcat for Web container. Thus, more and more 
vendors are inclined to selectively integrate some OTS middleware services into the 
application server, such as Web container and transaction service, and so on, which is 
called OTS middleware service integration.  

Flexibility relates to the range of possible changes supported by a platform [1]. In 
OTS middleware service integrations, flexibility can be refined into the requirements 
supported by application servers: (1) ease of modification for the evolvement of OTS 
middleware services; (2) ease of substitution of OTS middleware services. 

In conventional OTS middleware service integrations, flexibility is sacrificed by 
hard coding a concrete one, as different OTS products’ APIs are various. However, 
OTS products are continually evolving by third-parties, and application server 
                                                           
* The research was sponsored by the National Grand Fundamental Research 973 Program of 

China under Grant No. 2002CB312003, the National Nature Science Foundation of China under 
Grant No. 60603038, 60503029, and the National High-Tech Research and Development Plan 
of China under Grant No.2007AA01Z133, No.2006AA01Z156, No. 2006AA01Z189. 

∗∗ Corresponding author. 



344 Y. Li et al. 

vendors prefer to integrate different third-parties’ product for a kind of middleware 
service to best meet user requirements. No matter a minor change of the integrated 
OTS product or the vendors’ need to substitute the existing OTS product, application 
server developers have to review and modify all the related codes scattered in the 
application server, and furthermore either the large scale of the related codes or the 
deficiency of development documents make the modification and substitution harder. 

To achieve flexibility, any concrete logic of OTS products should be decoupled 
from that of application servers. We propose CAC (Contract Adapter Configuration), 
an OTS middleware services integration framework to address this problem. The 
main contributions of this framework are as follow. First, it effectively reduces the 
cost and the time of the OTS middleware services-based application server mainte-
nance. Because once the contract is defined, the maintenance workload of the integra-
tion is limited to the adapter rather than scatter around the complex application server 
codes whenever OTS middleware services evolve. Second, it allows application 
server vendor rapidly customize the application server to better meet the diverse re-
quirements through configuration. Besides, we implemented CAC in a J2EE applica-
tion server to demonstrate its feasibility and effectiveness. 

In the rest, Section 2 introduces the framework. Section 3 evaluates the framework.  

2   Integration Framework of Middleware Services (CAC) 

To avoid tangling the concrete logic of OTS middleware services with that of application 
server, the framework is constructed as in Fig.1: Contract defining the abstract interaction 
logic between the application 
server and a kind of middleware 
services, adapter implementing 
the contract for a candidate OTS 
product to eliminate the mis-
matches between the product and 
the contract, and configuration 
acting as a glue to stick a specific 
OTS product to be used.  

There are four steps when 
the application server invokes 
an OTS product (Fig. 1): 

1. Some parts of the applica-
tion server (e.g., EJB con-
tainer) invoke the middleware service through the predefined contract. The invo-
cation is sent to the router which is responsible for loading and invoking the re-
quired OTS products. 

2. When the router receives an invocation, it searches the service table for the ap-
pointed OTS product. The type of the middleware service is used as keyword. 

3. The router checks the status of the found OTS product. If it is unloaded, the 
router loads this OTS product and its corresponding adapter.  

4. Finally, the router dispatches the invocation to the appointed OTS product via 
the adapter and returns the result to the invocating part. Java reflection mecha-
nism is employed to operate on the appointed OTS product. 

OTS Service 
ObjectWeb JOTM Configuration 

use OpenJMS 
use JOTM  
…

OTS Service 
SONIC OpenJMS 

Application Server

Contract

Router

EJB
container

Adapter

Adapter

Service
Table

parse

invoke

search   

load (controllable)

forward

 

Fig. 1. CAC framework overview 



 Constructing Flexible Application Servers with OTS Middleware Services 345 

The details of the three main elements are given below. 

Contract. As the basis of the integration framework, the contract is composed of a set 
of operations. These operations exactly cover the functionalities required by the ap-
plication server to invoke and control this kind of middleware services. If the Service 
Provider Interface (SPI) has existed in the specifications, the contract should be con-
sistent with it. Then, application server developers define the application server spe-
cific operations. Developers should be careful when defining specific operations, 
considering it may not be supported by all OTS middleware service.  

Adapter sits between OTS middleware service and the application server to compen-
sate for the differences between the API of OTS product and the contract. One or 
more adapters are employed according to the mismatches between API and the opera-
tions in the contract into three kinds (Table 1).  

Table 1. Three kinds of mismatch 

Kind Definition 
Name 

mismatch 
The API rightly corresponds to the operation M in the contract, but only the names of the 
operations do not match. 

Function 
mismatch 

The API is incomplete to the operations in the contract, e.g., application server has to do 
pre or post processing for the operations in the contract. Or operation M in the contract 
should be implemented by a sequence of the operations in the APIs. 

Function 
deficiency 

No operation in the API supports operation M in the contract. 

Configuration describes OTS products used by an application. For each kind of mid-
dleware service, the configuration should specify the middleware service type, the 
adapter name, the load time (e.g., immediate representing loading at bootstrap or lazy 
representing loading when invocated), and the middleware service properties (e.g., the 
timeout for transaction). The application server will parse the configuration and store 
it in the service table at the bootstrap before deploying the applications.  

3   Evaluation 

Due to the inflexibility leaded by hard coding way, we restructured PKUAS [3], an 
open source J2EE-compliant application server, with CAC framework (Fig. 2). There 
are different OTS products for each middleware service in the OTS repository. The 
contract layer is composed of all the contracts for each kind of middleware services. 
 

 

Fig. 2. The CAC Framework in PKUAS 



346 Y. Li et al. 

pkuas.xml acts as the configuration. Below, we will present an evaluation of CAC 
with respect to the flexibility and the performance overhead in PKUAS.  

Flexibility, here, is the requirements of easy modification for the evolvement of 
OTS products and easy substitution of OTS products. So we employ NC, the number 
of classes to be changed when modifying or substituting an OTS product, to measure 
the flexibility. We count the NC of three OTS products in CAC-based PKUAS 
(PKUASC), the hard coding version of PKUAS (PKUASH) and a well-known open 

source application server ObjectWeb 
JOnAS v4.8 [4] (Table 2). 

As shown in the Table 2, the NC has 
been greatly reduced. Because the contract 
layer separates application server from 
concrete OTS products, only the adapters 
will use the specific OTS product’s APIs, 
thus NC in the CAC-based version is de-
creased to the number of adapter-related 
classes. Consequently, the application server 
developers just need to maintain the adapt-
ers whenever the OTS products evolve, and 
can substitute an OTS product by simply 
modifying the configuration. Comparably, 
in the hard-coding way, developers have to 
review and modify each part depending on 
OTS products in the application server, 
which is time-consuming and error-prone.  

As CAC inserts an intermediary layer into the middleware service invocation proc-
ess, we compared the original PKUAS with the CAC-based version by some tests to 
analyze the performance overhead of CAC (Table 3). For testing the integrated web 
container (Tomcat), we used Orientware XLinker [5]’s TestEcho web service as the 
server-side program; For testing the integrated transaction service (JOTM), we used the 
JOnAS test suite [6]. Comparing with the benefits CAC brings, we believe 3% perform-
ance lost is affordable.  

References 

1. Parlavantzas, N., Coulson, G.: Designing and constructing modifiable middleware using 
component frameworks. The Institution of Engineering and Technology, pp. 113–126 
(2007) 

2. ObjectWeb JOTM, http://jotm.objectweb.org/ 
3. PeKing University Application Server, http://forge.objectweb.org/projects/pkuas/ 
4. JOnAS, http://wiki.jonas.objectweb.org/xwiki/bin/view/Main/WebHome 
5. Ge, S., Hu, C.M., Du, Z.X., Wang, Y., Lin, X.L., Huai, J.P.: A Web service-based applica-

tion supporting environment. In: Proceedings of the National Software and Application, pp. 
97–102 (2002) 

6. JOnAS Transaction Service conformance test suit, http://www.easybeans.org/ 
doc/testguide/en/integrated/testguide.html 

Table 2. Numbers of classes 

   ObjectWeb 
JOTM 

ObjectWeb 
JORAM 

Apache
Tomcat 

PKUASC 5 3 1 
PKUASH 53 9 14 
JOnAS 40 11 18 

Table 3. Experimental results 

OTS  
Service 

Response 
time 
(with 
CAC) 

Response 
time 

(without 
CAC) 

Performance 
overhead 

Apache 
Tomcat 

540 ms 532 ms 1.5% 

ObjectWeb 
JOTM 

133 s 129s 3.1% 



SAM: Simple API for Object-Oriented

Code Metrics

Adam Edelman, William Frakes, and Charles Lillie

Virginia Polytechnic Institute and State University
Northern Virginia Center

7054 Haycock Road
Falls Church, Virginia 22043, USA

{edelman,frakes}@vt.edu,clillie@nc.rr.com
http://www.nvc.vt.edu

Abstract. This paper introduces the Simple API for Object-Oriented
Code Metrics or SAM. SAM has two distinct advantages over current ap-
plication generators for metrics. First, SAM can collect a much larger set
of metrics since it maintains context during metrics analysis. Second, SAM
is completely language independent since it specifies the types of events a
parser must generate, but not how to generate those events. Through ex-
amples, we will demonstrate how our API allows us to collect metrics not
possible with application generators. We will also demonstrate how SAM
can reduce the lines of code per metric by up to 90 percent when measured
against some of today’s most popular standalone tools.

Keywords: Software metrics, source analysis, code inspection, parsing,
generators, code metrics, object-oriented metrics, static analysis.

1 Introduction

Currently, there is no standard framework for softwaremetrics.Definitions are neb-
ulous and even metrics that appear simple, such as lines of code, are measured
differently from application to application. In addition, new metrics continue to
be released claiming better, more accurate measurement of software products and
processes. To keep pace, new metric tools are created and current tools must be up-
dated.By contrast, the process of parsing a programming language does not change
as frequently. It would therefore be beneficial to separate the relatively static task
of language parsing from the more dynamic task of metrics analysis.

Parsing is the first step in creating metrics tools. Since programming lan-
guages have become increasingly complex, building a parser from scratch is time
consuming, with developers usually taking advantage of a parser generator. A
parser generator takes as input an annotated language description in the form
of a grammar. From the grammar, the parser generator generates a parser con-
sisting of a syntactic parser or recognizer augmented with semantic actions that
are triggered by the recognizer [1].

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 347–359, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.nvc.vt.edu


348 A. Edelman, W. Frakes, and C. Lillie

For metrics, adding code to the parser means correctly identifying each metric
event of interest. This can be difficult for complex programming languages. For
example, the grammars for the Java language that come with JavaCC [2] and
ANTLR [3], two of the most popular parser generators currently used in many
metrics tools [4]-[7], are both over 1000 lines. Within the grammars, there are 29
separate locations of non-comment source lines (NCSLs). Consequently, when
parsing and metrics are tightly coupled, the complexity of even simple tasks
increases relative to the complexity of the grammar.

We propose a model that decouples parsing from metrics analysis. Several
other works have explored this idea [8]. Most can be classified as application
generators since metric tools are created using domain specific languages. We
refer to these methods collectively as the generative methods.

GENOA [9] is a framework based on the GEN++ analyzer generator. GEN++
parses C++ code and creates parse trees decorated with additional information
useful for code metrics. Users then describe how GENOA should use the dec-
orated parse trees using a GENOA specific language known as GENII. This
allows users to create customizable applications abstracted from the parser.
However, in this approach the user must use GENII specifications to create
applications, which requires in-depth knowledge of the parse tree structure. In
addition, GEN++ only works with the cfront C++ complier.

CIA++ (C++ Information Abstractor) [10] is another tool built on the
GEN++ analyzer generator. The system extracts all information form the dec-
orated parse tree and stores it in a text database. Command line tools perform
specialized queries on the database. This requires information about the struc-
ture of the database to determine what data can be obtained and how to obtain
it. In addition, CIA++ also relies on the cfront compiler. ARMA (Ada Reuse
Measurement Analyzer) [11] uses its own parser to parse Ada source code and
create decorated parse trees. A metric analyzer then calculates reuse metrics
from the parse trees. Although the system separates parsing from metrics anal-
ysis, ARMA is used to calculate a specific set of metrics from Ada source code
and cannot be customized by the user.

WebMetrics [12] is a platform independent metrics tool that uses JavaCC to
parse object oriented source files and store source attributes in a MySQL [13]
database. A user queries the database with SQL queries to retrieve informa-
tion. WebMetrics improves upon previous work by using a SQL database that
allows developers to hook into the code analysis database without knowledge of
a specialized query language. However, WebMetrics suffers the same shortfalls of
other previous work. While separating parsing from metrics, all these approaches
also separate code attributes from the actual code. Users queries are limited to
a static collection of attributes. Although the queries may be flexible, a user is
ultimately limited by the data.

SAM has two distinct advantages over generative methods. First, SAM can
collect a much larger set of metrics since SAM maintains context during metrics
analysis. Generative methods bind code attributes at compile time, performing
analysis on the static set of attributes. SAM pushes data binding from compile



SAM: Simple API for Object-Oriented Code Metrics 349

time to runtime, performing parsing and analysis concurrently. This allows us
access to the underlying source code, or context, during analysis. SAM relies on
an event driven model for metrics where the parser sends notifications of metric
related events as it traverses the source code. Events that are of interest to
object-oriented metrics collection include the occurrences of lines, methods, and
classes in a source file. In addition to notifications, the parser provides context
sensitive attributes related to the notification. Using attributes, we can obtain
the line text for every occurrence of a line and reconstruct the entire source
code. Since an object-oriented code metric is by definition any metric derived
from object-oriented source code, we will be able to obtain any object-oriented
code metric with SAM.

The second advantage of SAM is language independence. SAM specifies the
types of events a parser must generate, but not how to generate those events.
Consequently, a compiler or a parser generator can be used to build a SAM parser
without altering the metrics analysis module. Any object-oriented language that
contains the events can be modeled in SAM.

SAM also provides advantages over many of the methods currently used to
build metrics software. We will show how, using SAM, we can reduce the lines of
codes required to create metrics applications by up to 90% compared to some of
today’s most popular metric tools. In the next section, we describe the system
model for SAM. Section III compares SAM with current generative methods and
standalone tools. In Section IV, we show through examples that SAM can collect
metrics not possible with generative methods and more efficiently than current
standalone tools. Section V is the conclusion.

2 System Model

Our API adheres to many of the principles in the Simple API for XML (SAX)
[14], since it recognizes the elements of source code similar to how SAX recognizes
XML elements. In SAX, an application consists of a SAX parser and a registered
SAX listener. The parser, which implements the XMLReader interface, handles
the XML document as a single stream of data. The data stream is unidirectional
such that previously accessed data cannot be re-read without re-parsing. The
parser generates callback methods as it traverses the XML document.

An event listener, which implements the ContentHandler interface, can reg-
ister with the parser and receive the callback notifications. The main callback
methods are startDocument, endDocument, startElement, and endElement.
Fig. 1 illustrates the interaction between SAX components while parsing an
XML document.

In addition to providing event notification, the methods also return attributes
such as element name, namespace URI, and other useful attributes. The at-
tributes provided by the callback methods depend upon the parser used since
there is little guidance describing what attributes a SAX parser should pro-
vide. Since creating a parser from scratch is time consuming, a developer usually
takes advantage of a pre-existing implementation of a SAX parser. By separating



350 A. Edelman, W. Frakes, and C. Lillie

Fig. 1. High level architecture for SAM

information extraction from information use, we can easily swap parser in and
out of applications without having to change the business logic of the application.
If a parser does not contain the right attributes for an application, a developer
can select any number of SAX parsers freely available on the Internet that suit
the needs of the application better. The spectrum of parsers range from the ex-
tremely portable to blazing fast, and a choice can be made depending on the
priorities of the project. If further customization is required, the developer has
the option of building a SAX parser so long as it implements the XMLReader
interface. This guarantees there will be a parser that meets the requirements of
any application, and all interactions with the event listener occur according to
a predefined specification.

We would like to apply this idea to metrics by creating an API flexible enough
for use in any OO metrics application. SAX focuses on the well-defined concept
of an XML element. In metrics, an element is not as clearly defined. To help us
determine the elements of source code analysis, we performed domain analysis
on several of the most popular open source metrics tools using the DARE [15]
methodology. From our domain analysis, we were able to group metrics into
five distinct categories. The categories are line, method, class, documents and
project. As in SAX, there is the notion of a multi-leveled hierarchy of events, such
that events do not occur independently of each other. For example, a method
will start and end inside of a class. A class will start and end inside of a file.
While each system used different terminology, architecture analysis revealed that
each divided the metrics into similar categories and recognized the hierarchical
relationship among the categories. With the metric elements defined, we describe
the components of SAM.

Code Reader : Code Reader is the Java interface that SAM parsers must im-
plement. CodeReader contains the following methods: parse(InputSource) and
setCodeHandler(CodeHandler). The parse method takes an InputSource, which



SAM: Simple API for Object-Oriented Code Metrics 351

is any input capable of being serialized to character or data stream. This is usu-
ally a source file. The CodeReader converts the input into a stream of events
corresponding to structural features of the input, namely, lines, methods, classes
and the project. The events are sent to the CodeHandler specified by the set-
CodeHandler method. The parser used in Section III is for the Java language.

CodeHandler : The CodeHandler is the interface implemented by classes that
wish to receive event notifications. These classes are where metrics analysis oc-
curs. The classes implement the start and end methods for each metric event,
which will be called by the parser. Each method also contains an Attributes class
passed in as a parameter. The instantiated class of the Attributes interface is
specific to the generated event and populated by the parser during source code
traversal. In our Java SAM implementation, the JavaMethodAttributes class
contains the parameters, exceptions and return type of a method. By not forc-
ing developers to implement a large number of mandatory attributes, we allow
developers the flexibility to customize their parsers in ways that suits their need
with creating unnecessary overhead.

Using this model, we can measure almost any object-oriented code metric. In
the next section, we will demonstrate some of these capabilities.

3 Comparing SAM to Current Methods

3.1 Generative Methods

SAM has two distinct advantages over current generative methods. First, com-
pared to generative methods SAM is able to collect a much larger set of metrics.
Current generative methods are limited because they perform metric parsing
and metric analysis as two distinct procedures (Fig. 2). For parsing, the front
end of a compiler or a parser generator is used to parse the source code and
collect a specific set of attributes that are useful for later metrics analysis. This
can include inbound/outbound method calls, number of lines, or nesting level.
Attributes are stored in a decorated parse trees, text file or database for later
use during metrics analysis. By parsing and storing the information in a met-
rics oriented data structure, generative methods abstract parsing from metrics
analysis. We save development time by reusing the parsing module and allow
ourselves to focus on metrics analysis. However, the set of metrics we can com-
pute is limited by the attributes collected. For example, if we wanted to calculate
cyclomatic complexity [16] we would need to know how many branches exist in
the source code. If we cannot find the necessary attribute in the database, it will
not be possible to calculate the metric. We could build a very large database
to store every imaginable metric related attribute, but inevitably, this approach
falls short since it is impossible to collect all the attributes for every metric we
would want to calculate now and in the future.

SAM preserves the abstraction of parsing and analysis, but uses a different
model, presented in Fig. 3, to collect a far larger set of metrics. Instead of
relying on a static set of attributes, we report attributes as they happen, which



352 A. Edelman, W. Frakes, and C. Lillie

Fig. 2. Generalized process flow for generative methods

allows us to examine the context in which the metric event occurred. Context is
guaranteed by the LineAttributes class, which when implemented must contain
the text of the current line. Going back to our cyclomatic complexity example,
if no branch attributes existed in our LineAttributes class we could examine the
line to determine the existence of a branch. Context allows us to collect metrics
even when the attributes needed for analysis do not exist in our database.

Fig. 3. Process flow for SAM

The second advantage to SAM is language independence. Most generative
methods use the front-end of a complier, which only parses a single language. A
notable exception is WebMetrics, which relies on the JavaCC parser generator to
populate an attributes database. The JavaCC parser generator contains a library
of language grammars, which WebMetrics uses to parse different languages.

SAM is language independent since the events it generates are common to
all object oriented languages. The CodeReader class can use the front-end of a
compiler or a parser generator to convert the input source code into a stream
of events. In the following section, we used the JavaCC parser generator for
parsing and generating the metric event for Java code. JavaCC maintains a free
repository of parsing specifications for many languages and we could have just
as easily used any of the other languages to do the parsing tasks required by the
CodeReader class. After modifying the grammar to generate SAM events, we
could swap it into our application without having to make any other changes.
The level of abstraction in SAM provides us with true language independence
not found in the generative methods. Therefore, our hypothesis is that collection
ability is a function of the number of attributes a generative system provides,
although context allows us to collect any code metric regardless of attributes.
In addition, language independence is a function of how many languages an
application can accept as input.

3.2 Standalone Methods

We refer to a metrics tool as standalone if it takes as input a file or files and,
without any user interaction, outputs a set of metric results. Currently, almost all



SAM: Simple API for Object-Oriented Code Metrics 353

open-source standalone tools are built using parser generators. This entails mod-
ifying a parsing grammar by adding code to perform metrics analysis. The gen-
erated parser works in conjunction with additional classes written from scratch
to create a functional standalone tool. In order to leverage a parser generator, a
developer must become familiar with the language of the grammar specification.
This can be a difficult process as every parser generator has its own grammar
specification language. Once familiar with the language, it is necessary to go
through the entire grammar for a specific language to determine where to add
metric analysis code. Since the metrics analysis code is spread throughout the
grammar file, the parsing process is tightly coupled to analysis. As a develop-
ment approach, combining parsing and metrics analysis removes the abstraction
we saw in the generative methods, significantly increasing the code required for
an application and decreasing the readability and maintainability. The benefit
to this approach is we now have access to context, which allows us to collect an
unlimited set of metrics, not bound to an attributes database. Consequently, we
have traded ease of use for analysis flexibility.

SAM aims to combine the flexibility of parser generators with the ease of
use of application generators. Since SAM uses metric events, we do not need
to examine an entire language grammar. In addition, all the metric logic is
completely separate from the parsing, which means less code and makes the
system more readable and more maintainable. As previously mentioned, we can
collect any code metric with SAM, so there is no reduction of analysis flexibility.
For these reasons, SAM is an ideal API for developers looking to quickly develop
and deploy metric software.

Our hypothesis states that as we increase the number of classes required to
derive a metric, the amount of code also increases. In the next section, we will
demonstrate the capabilities of SAM and show how we can significantly reduce
the amount of code compared to standalone tools while collecting a range of
metrics not possible with generative methods.

4 Numerical Methods

For our experiments, we tested how effective SAM is in reducing the amount of
code required to build a metrics application. To test this, we compared the lines
of code required to obtain a metric in a standalone tool against the lines of code
required by a SAM version. Since we needed access to source code, we limited
our comparison to open source metrics software written in Java. We chose the
ten most popular tools, ranked by activity, available on SourceForge [17]. We
then used the DARE methodology to build a feature table listing which metrics
each tool collected. The five most collected metrics are shown in Fig. 4. We chose
these metrics as the focus of our experiments.

To compare SAM to standalone tools we measured the number of classes and
lines of code per metric for each of the five metrics. Determining a NCSL to-
tal was especially difficult task since all the tools measured several metrics. In
addition, most tools included a user interface that we did not want to count as



354 A. Edelman, W. Frakes, and C. Lillie

Fig. 4. Top five metrics as ranked by popularity

part of the metrics analysis code. We decided not to include any class primarily
dedicated to the user interface. For any classes containing interface and analy-
sis code, we only counted the analysis lines. We included code common to the
analysis of multiple metrics in the NCSL count for each of those metrics. We did
not include any code added to the parser generator grammar, even though in
many cases it contained analysis logic. While the results are not an exact count,
we believe our approach gives a conservative estimate of the number of NCSLs
required for each metric.

Next, we built application with SAM to compare against the standalone tools.
This required a CodeReader class capable of parsing the Java language. Ordi-
narily, a developer does not write this class, instead choosing the class from a
library. However, since no SAM library exists we wrote our own. Once writ-
ten, our CodeReader class can be used in any Java SAM application. We built
our CodeReader class (JavaSAMReader) by leveraging the JavaCC parser gen-
erator. To get JavaCC to work within the SAM model, we modified the Java
language grammar with code that populated the Attribute classes and generated
our SAM events. A CodeReader for C++ or Smalltalk would be built in much
the same way since JavaCC grammars exist for those languages as well. The
parse method of JavaSAMReader generates a JavaParser class from our modi-
fied JavaCC grammar. We use the setCodeHandler method to tell the JavaParser
where to send the attributes and event notifications. JavaSAMReader required
376 lines of additional code in the JavaCC grammar and 16 lines in the class
itself for a total of 392 NCSLs. For our results, we did not include the lines
required to build the JavaSAMReader class since we did not count lines from
parsing modules in the standalone tools. In addition, a developer usually chooses
the CodeReader from a library rather than building one from scratch.

Once we have our CodeReader class, we can begin building metrics appli-
cations. To demonstrate how an application is built using SAM we will build
a simple application that measures NCSLs and CSLs (comment source lines).
Our SAM application will consist of two classes. A main class instantiates our
CodeReader and CodeHandler, and calls the parse method on the CodeReader
to begin parsing. A class implementing the CodeHandler interface handles the
events generated from the CodeReader.



SAM: Simple API for Object-Oriented Code Metrics 355

Fig. 5. LineCounter.java

Fig. 5 shows the LineCounter class, main class of our application, which in-
stantiates the JavaSAMReader and LineCountHandler. We call the setCodeHan-
dler method to tell JavaSAMReader where to send the events and then call the
parse method to begin parsing the specified file. The parse method throws a
SAMException if any errors occur during parsing.

Fig. 6 is the LineCountHandler, which implements the CodeHandler inter-
face. For our application, we only need the endLine and endFile methods. Each
time the endLine method is called, we check the JavaLineAttributes to deter-
mine which counter to increment. When we reach the end of the file, we print
the counts to screen. It is important to note that an implementation of Lin-
eAttributes does not have to distinguish comment from non-comment lines. In
fact, the only required field for classes implementing LineAttributes is line text.
However, those developing Attributes classes are strongly encouraged to include
as many helpful fields as possible.

This simple application demonstrates how to quickly build metrics tools using
SAM. Our application required only 2 classes and 31 lines of code. Compared
to standalone tools, this represents a code savings of over 90 percent. Results
for other metrics are equally impressive. Fig. 7 compares SAM with some of the
standalone tools. The reason our results are so dramatic is not that the SAM
model does anything radically different from these standalone tools. In many
ways, their design actually mirrors that of SAM. For instance, JRefactory [5] has
MethodMetrics, TypeMetrics, and ProjectMetrics classes, which are functionally
equivalent to the Attributes classes in SAM. The MethodMetrics class contains
attributes such as method name, parameter count and block depth.

These attributes might appear in an implementation of MethodAttributes,
and in fact do appear in our JavaMethodAttributes implementation. The
difference between our model and the standalone methods goes back to the ab-
straction between parsing and metric analysis. In JRefactory, the MethodMetrics



356 A. Edelman, W. Frakes, and C. Lillie

Fig. 6. LineCountHandler.java

Fig. 7. Number of Classes and Non Comment Source Lines Required to Obtain Metrics
in Various Tools

class calculates lines of code per method and performs other analysis that breaks
this abstraction, increasing the number of classes needed to build an application,
which in turn increases the lines of code. As we can see in Fig. 7, as the num-
ber of classes increases so do the lines of code. Since our parsing module is well
abstracted, we only require analysis related classes, which translates to fewer
classes and less code.

Now let us look at a different example to understand how context helps us
collect metrics otherwise impossible with generative methods. Efferent coupling
measures the dependence of one class on others. High coupling may indicate
brittleness since the class is dependent upon the stability of the classes to which
it is coupled [4]. We measure efferent coupling by determining the number of
types directly referred to anywhere in a given class. A direct reference means
we do not include all the classes or interfaces of an inheritance tree, rather just
the class or interface referred to in the class we are measuring. Fig 8 shows
our EfferentCouplingHandler, which implements the CodeHandler interface. At
the start of a class, we add any types the class extends or implements to a list



SAM: Simple API for Object-Oriented Code Metrics 357

Fig. 8. EfferentCouplingHandler.java

of known classes. We use JavaClassAttributes to retrieve these types with the
getExtendsList and getImplementsList methods. As we encounter lines within
the class, we check to see if they are declarations by using the getLineType
method of JavaLineAttributes. If the line is a declaration, we get the line text
and check it for types not that do not exist in the list of known types. We print
the list to the screen when we reach the end of the class.

This example shows how we can use a combination of attributes and context
to gather metrics that are unobtainable with methods based strictly on static
attributes. Our JavaClassAttributes contains the list of types a class implements
or extends, so we use these attributes. There is no attribute for referred type in
JavaLineAttributes. Thus, we must examine the line text. If this were a gener-
ative tool with the same set of attributes, determining efferent coupling would
simply not be possible. In SAM, the attributes serve as a helpful starting place
for an application instead of a strict limitation.



358 A. Edelman, W. Frakes, and C. Lillie

Through our examples, we have shown that SAM can collect metrics not
possible with generative tools and more efficiently than current standalone tools
based on parser generators.

5 Conclusion and Future Work

This paper detailed SAM, a simple and reusable API for the development of
object-oriented code metrics software. SAM has two distinct advantages over
current application generators for metrics. First, SAM can collect a much larger
set of metrics since it maintains context during metrics analysis. Second, SAM
is completely language independent since it specifies the types of events a parser
must generate, but not how to generate those events. Due to the limit applica-
tion generators place on metrics collection, most of today’s standalone metrics
tools rely on parser generators. Although, parser generators provide flexibility
in metrics collection, they remove the abstraction between parsing and analysis,
which increases the amount of code required to obtain a metric. By combining
the abstraction of generative methods with the flexibility of parser generators,
we demonstrated significant improvements over either single approach. In our
examples, we showed how our API allows us to collect metrics not possible with
application generators by combining attributes with context. We also compared
SAM to some of the most popular open source metrics tools to determine how
much of a code savings we could get by using SAM. Our results proved that
SAM could reduce code significantly, up to 90 percent for some metrics.

Our future work focuses on growing the SAM library. As we have seen, one
of the major benefits of SAM is the abstraction that exists between parsing and
metrics analysis. Specifically, developers can focus on analysis when libraries of
parsers exist for their use. Currently, there is no such library. This is why SAM is
freely available on SourceForge at http://simpleapimetric.sourceforge.net/. We
encourage everyone to download the API and make suggestions to help us grow
and improve SAM.

References

1. Parr, T.J., Quong, R.W.: LL and LR translators need k 1 lookahead. ACM SIG-
PLAN Notices 31(2), 27–34 (1996)

2. JavaCC Website: https://javacc.dev.java.net/
3. ANTLR Website: http://antlr.org/
4. Eclipse Metrics Plugin Website:

http://www.teaminabox.co.uk/downloads/metrics/
5. JRefactory Website: http://jrefactory.sourceforge.net/
6. JDepend Website: http://www.clarkware.com/software/JDepend.html
7. JavaNCSS Website: http://www.kclee.de/clemens/java/javancss/
8. Succi, G., Liu, E.: A Relations-Based Appproach for Simplifying Metrics Extrac-

tion. In: ACM Applied Computing Review, pp. 27–32. ACM Press, New York
9. Devanbu, P.: GENOA - A Customizable, Front-End Retargetable Source Code

Analysis Framework. ACM Transactions on Software Engineering and Method-
olgy 8(2), 177–212 (1999)

https://javacc.dev.java.net/
http://antlr.org/
http://www.teaminabox.co.uk/downloads/metrics/
http://jrefactory.sourceforge.net/
http://www.clarkware.com/software/JDepend.html
http://www.kclee.de/clemens/java/javancss/


SAM: Simple API for Object-Oriented Code Metrics 359

10. Grass, J.E., Chen, Y.: The C++ Information Abstractor. In: The Second USENIX
C++ Conference, San Francisco, CA (1990)

11. Bieman, J.M., Karunanithi, S.: Measurement of Language-Suppported Reuse in
Object-Oriented and Object-Based Software. Journal of Systems and Software 30,
271–293 (1995)

12. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A Relational Approach to Software
Metrics. In: 2004 ACM Symposium on Applied Computing, pp. 1536–1540 (2004)

13. MySQL Website: http://mysql.com/
14. SAX Website: http://www.saxproject.org/
15. Frakes, W., Prieto-Diaz, R., Fox, C.: DARE: Domain Analysis and Reuse Environ-

ment. Annals of Software Engineering 5, 125–141 (1998)
16. McCabe, T.J.: A Complexity Measure IEEE Transactions on Software Engineering,

2 (1976)
17. SourceForge Website: http://sourceforge.net/

http://mysql.com/
http://www.saxproject.org/
http://sourceforge.net/


Leveraging Source Code Search for Reuse�

Hans-Jörg Happel, Thomas Schuster, and Peter Szulman

Forschungszentrum Informatik (FZI), Haid-und-Neu-Str. 10-14,
D-76131 Karlsruhe, Germany

{happel,schuster,szulman}@fzi.de
http://www.fzi.de

Abstract. The importance of search as a central support activity for
information handling and software reuse has been highlighted by sev-
eral authors. Although it is one of the most dominant daily activities
of developers, it is not a first order concern of most development tools.
Recently a number of specialized search engines for source code emerged
that enable access to reusable assets from both the web and within orga-
nizations. We argue that those source code search engines can play a key
role for information access throughout the software development lifecy-
cle. In this paper we present an analysis of existing approaches and tools.
Furthermore we point out several shortcomings and provide a roadmap
for future enhancements.

1 Introduction

Software engineering is a knowledge-intensive activity, which requires developers
to deal with a large set of information of various sort - ranging from descriptions
of the application domain, software engineering techniques, the software project
itself and its development artifacts. Additionally, software development today
is characterized by distributed team work, often involving several parties, for
instance in outsourced or Open Source development settings. Hence, good com-
munication and coordination of information within the software development
team is crucial [8].

The importance of search as a central support activity for information
handling has been highlighted by several authors. In an empirical analysis of
developers’ daily work activities, Singer et al. [22] found out that searching for
information was the most dominant daily activity of the participating developers.
Henninger [9] reports that searching and accessing different types of information,
accounts for around 40% of the time of people in software organizations. A more
recent observation of developers using the Eclipse integrated development envi-
ronment (IDE) by Murphy et al. [19] shows that search is an important activity
even just inside the IDE.

While this notion of search is rather fuzzy, and subsumes several different
activities (c.f. section 2), the reuse of existing artifacts is considered a major
� This work has been partly supported by the TEAM project, which is funded the

EU-IST program under grant FP6-35111 and the BMBF-funded project WAVES.

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 360–371, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Leveraging Source Code Search for Reuse 361

issue in terms of productivity [7]. However, widespread artifact reuse remains
difficult for several reasons.

First, the software development process is typically driven by requirements
given by involved stakeholders [3]. Many companies therefore fail to realize syn-
ergies or to reuse artifacts and development knowledge from prior or simultane-
ous projects. Secondly, the retrieval of reusable assets requires an appropriate
description [18]. However, it turned out that it is difficult to define and maintain
suitable metadata especially for binary artifacts [7].

In this paper, we argue that the recently emerging technology of source code
search engines can be an important enabler for searching reusable components
in particular and for any kind of information need in the software development
process in general. However, we identified that most source code search engines
are focussed on retrieving lines of code and often lack possibilities to explore
further connected information.

The remainder of this paper is organized as follows: Section 2 summarizes
situations in which a developer or a development team might need to seek for
further information on functional and non-functional details of a software sys-
tem. Section 3 describes current state of the art in terms of searching facilities
for software systems. In Section 4 we catch up with the preceding section and
demonstrate our vision on capabilities a development supporting search engine
has to cover. Finally the paper will close up with our conclusion of the problem
domain furthermore we will give an outlook on next steps in this field of study.

2 Use Cases

With shortening release cycles in mind recent years have shown that Software
Engineering demands that developers get information on implementation de-
tails as quick as possible. Since software also raises in complexity the need to
exchange information amongst development and project management increases
as well. From a development perspective two needs for involved teams can be
distinguished. The first one is to know which functionality (what) has to be
implemented. The second question is the way (how) these requirements (again:
what) might be implemented. Both issues contain several facets and can be ad-
dressed in a diversity of means. In the remainder of this section we focus on the
how of these engineering aspects. So far we figured out five main issues in this
field of studies which are comprised in the table below.

Issue Topic

Software reuse and enhancement Software re-engineering
Software maintenance
Information about reuse Insight information and under-

standing
Project properties and relevance
License compliance



362 H.-J. Happel, T. Schuster, and P. Szulman

In larger projects a software engineer has to deal with one or more of these
aspects. As the table displays it the topics can be arranged under two super
topics; the first two can be summarized as questions concerning software re-
engineering whilst the last three can be aggregated as topics dealing with
insight information and understanding. Both of our next two sub sections
will therefore address these questions in detail.

2.1 Software Re-engineering

The process of re-engineering is usually deeply integrated in many phases during
attention handling of common software development processes. This is what is
also considered as refactoring which is mainly driven by changing requirements,
but also during maintenance re-engineering is often needed to incorporate new
features.

Software Reuse and Enhancement. In general a software engineer might
raise the question if a given problem demands a complete new development
or if it is possible to make use of other solutions. If that is not the case a
subsequent question could be if the problem domain can be further divided into
smaller parts. For each of these parts the original question could be raised again
or otherwise the problem might be divided again and so on. Related to this
approach an engineer could also ask if an existent solution does cover part of the
problem domain and therefore might be used partially to build up a new piece
of software. Independent of the mode of search - partial or complete solutions -
this domain can be further divided into four aspects of search:

– Search of feature
– Search of algorithm
– Search of component
– Search of Library

Depending on the decomposition grade one of these categories will be applicable
for search queries.

Software Maintenance. Software maintenance involves task such as defect
repair, which requires developers to locate code relevant to a maintenance task.
Also it demands developers to grasp the internal structure and design rationale
(program understanding). Therefore developers often need to seek inside the
project for certain artifacts, methods or code snippets. As far as extensions to
given functions are spotlighted an engineer has to answer questions described in
the previous paragraph.

2.2 Insight Information and Understanding

Reuse, which strives to find existing artifacts that might be reused partially or
as a whole in a new context, always also demands developers to grasp insight
details of the software artifacts that are part of the search results as well as
those that belong to the software that has to be extended. Besides understanding
the problem domain another need is to know that the software complies with
applicable laws and does not interfere with rights of other parties.



Leveraging Source Code Search for Reuse 363

Information About Reuse. Whenever other solutions are reused there is a
need to understand at least how this reuse can be accomplished. That means
that an engineer has to know how to bind or integrate the solution to the current
project. Therefore it is at least necessary to know about those parts in a black
box manner (comparable to the knowledge of a common api, e.g. Java 2 SE). To
get this done a software engineer might be looking for code samples using the
same solution whilst in a second step common test cases might also be searched
in order to check functionality or correct binding of the elements found in first
place. More information might be interesting from an evaluation perspective
wherein it can be desirable to know if there are any projects related to the
current development project. Concerning related projects again there might be
two different questions. The first one is dealing with competing projects in the
project’s problem domain. The other one is related to similar projects - that
might also be competing - that are running on other platforms or are written in
different implementation languages.

Project Related Information. Besides search for solutions and how to inte-
grate those it might also be relevant to get an idea of elements found in terms
of their quality. This question is not only related to foreign products but also
to the own solution or other solutions the team might have developed before.
Code quality in this sense can be interesting out of different points of view like
metrics according to quality assurance models (e.g. ISO 9126, FURPS, FCM or
FS Model) or relevance for other projects. Regarding relevance in other projects
a developer is interested if a project is referenced by others which might be an
indicator of quality also. Regarding the own project, references and dependen-
cies, e.g. of classes can also reveal failures in system design (like common anti
patterns).

License Compliance. Another problem that appears in the process of software
development independent of the usage of foreign projects is the question of com-
pliance. If other projects are used the question is if a certain license is applicable
or if some references have to be removed before this license can be used. Also
it is definitely important for companies that use third party software that this
software does not violate other rights. Even if there is no cross reference to other
libraries the question remains if a certain piece of code could be claimed by other
third parties as their own property. Summarizing these questions the complete
code including all used libraries needs to be checked for license compliance.

3 Code Search Process

In this section, we describe and analyze existing approaches and tools for search-
ing in source code. Therefore, we first introduce a number of paradigms, before
we do a systematic comparison according steps in the search process. Finally,
we describe some open issues of state-of-the-art implementations.



364 H.-J. Happel, T. Schuster, and P. Szulman

3.1 Overview of Approaches

This section shortly describes three different paradigms of code search: keyword-
based search, structured search and search in an IDE.

Keyword-Based Search. As known from common web search, keyword-based
search is a convenient retrieval method for end users. It requires them to express
their information need by plain text keywords and returns a set of matching
documents. There are various extensions to the basic concept of keyword-based
search, such as Boolean queries (combining keyword terms by Boolean opera-
tors), fuzzy queries (allowing results for similar terms) or phrase queries. Re-
cently a number of web search engines specialized on source code, which adopt
the keyword-based paradigm, have been created. Accordingly, the user enters a
set of keywords to retrieve a list of source code files.

Those source code search engines, such as Koders1, Krugle2 or Google Code-
Search3 index freely available Open Source code which is available throughout
the internet or from platforms such as SourceForge4. Besides that, some vendors
offer their software for enterprise internal usage.

Structured Search. While keyword-based search is considered to be an in-
tuitive and fast model that can be applied to all resources that have a plain
text representation, its approach suffers from low semantic precision (due to
synonyms and homonyms) and does not allow for sophisticated expressions of
an information need. Structured search approaches in turn, define special query
languages, which allow users to express more complex queries. Database queries
in SQL are an example of this.

Accordingly, structured search is not applicable to any kind of information,
since information items must also comply with a formal schema, against which
the structured queries can be matched. Source code can be used for structured
search, since it complies with a formal schema. In recent years a number of
approaches have applied these techniques, mainly in the domain of software
maintenance. Work such as of Welty and colleagues [25,5] or in the QBench
project [21] extract facts from source code to build a formal knowledge base.
Users could then run queries against this knowledge base such as “give me all
classes which call this class”. While structured search allows for more powerful
and precise expressions of an information need, this requires either skilled users
or advanced search interfaces which hide the query formulation complexity from
the user.

Search Inside an IDE. Searching inside and for certain source code artifacts
is relevant in reuse and maintenance scenarios. The default tool environment for
these tasks is typically an integrated development environment (IDE). Searching

1 http://www.koders.com
2 http://www.krugle.com
3 http://www.google.com/codesearch
4 http://www.sourceforge.net



Leveraging Source Code Search for Reuse 365

functionality of such tools, like the popular Eclipse IDE, has improved over the
last years. While based on keyword-based search [10], Eclipse allows restrict-
ing queries to certain syntactical structures of the source code. Thus, Eclipse
provides some kind of combination of keyword-based and structured search.

3.2 Comparison of Approaches

In this section, we describe the features and state-of-the-art of source code search
engines in detail. Therefore, we present our analysis according to the major steps
in the information retrieval process:

– The search starts with the information need of a user. This need triggers the
user to formulate a query to a search engine (Query Formulation)

– The search engine retrieves - based on an appropriate algorithm - the search
results by analyzing the query and the indexed documents. The search results
are ordered according to a ranking algorithm (Relevance Ranking)

– The ranked result set is presented to the user based on a presentation con-
cept, which includes aspects that allow the user to quickly assess whether a
search result meets the information need (Result Presentation)

– If no search result fulfills the information need of the user, users typically
refine (or vary) their original query in several iterations to find some that
meets their information need (Result Interpretation)

In the following, we will further characterize existing approaches. Basis for
our analysis was our comparison of six web-based source code search engines
(c.f. [4]) as well as research papers submitted on that topic.

Scope. The majority of approaches concentrate on raw source code. While
most actual systems focus on popular programming languages such as Java,
some engines index up to 45 different languages. Some systems, such as Krugle
go beyond source code and also allow searching for open source projects and
related technical information.

Query Formulation. The vast majority of approaches offer a plain search box in
order to express a simple keyword-based query. However, when compared to web
search, source code search engines typically offer abroader range of extended search
options. This means that they allow for restricting the search to source code of a
specific Open Source software license or some structural elements inherent to the
code such as class names, method names, method calls or interface names.

As already pointed out, the LaSSIE [5] and QBench [21] systems offer to
formulate complex structured queries according to a pre-definied model [24].
Furthermore, the web-based engines Merobase5 and Codase6 allow specifying
object abstractions consisting of combined class and method information which
can be matched.
5 http://www.merobase.com
6 http://www.codase.com



366 H.-J. Happel, T. Schuster, and P. Szulman

Relevance Ranking. With relevance ranking, search engines try to order the
set of matching results according to their relevance for the querying user. Classic
information retrieval approaches such as TF-IDF [1] use statistical information
for this ranking. TF-IDF computes a higher score for a result document the more
often a queried term occurs in a result document and the more seldom this term
is in the overall set of documents. Most keyword-based approaches use this kind
of algorithms to compute their relevance ranking.

An exception from this is the ComponentRank approach [17], which applies
the Google PageRank concept in a software engineering context. The original
PageRank roughly computes a single page rank value for each page based on
the page rank values all of pages which link to that page. ComponentRank ac-
cordingly equates single Java files with pages and their use relations in the code
(i.e. function calls) with hyperlinks. The ComponentRank of a file is thus com-
puted by aggregating the ComponentRanks of its calling files. Similar to Google,
the authors report that often used and probably more generic components are
ranked high.

For approaches offering structured search, ranking is a different issue. Since
precise formal queries allow for a logical comparison with the result representa-
tions, a result is either a match or not. Ranking is thus often done alphabetically,
or can be manually specified by the user as part of the query.

Presentation of the Search Results. As described so far, many source code
search engines adopt the basic concepts of classic web search. Result presentation
is no exception from this. Most source code search engines use a list-based result
presentation, which shows the name of the matching classes and a preview of the
containing source code. Some search engines, such as the search inside the Eclipse
IDE, use a tree-based model, which displays matches in kind of an abstract-
syntax tree, which shows its surrounding elements. Similarly, search results in
Krugle are presented at the correct hierarchical position of the files belonging to
a certain open source project.

Result Interpretation. Web search engines employ various techniques to guide
and leverage user interaction, once a first list of results is displayed. One example
are query refinements, which suggest similar queries or terms which seem more
appropriate (e.g. in the case of typos). Another example are feedback mechanisms
which allow deriving users relevance rating for the given results. Such relevance
rankings can either be collected explicitly (e.g. manual rating by the user) or
implicitly (e.g. by interpreting user behaviour) [13].

While some source code search engines provide some basic query refinement
mechanisms (e.g. Google CodeSearch), no system is reported to leverage any
relevance feedback.

4 Open Issues and Potential Improvements

While our description shows, that there have been remarkable achievements in
terms of code search in the past years, we also observe a number of open issues,
which need improvements in order to further improve code search.



Leveraging Source Code Search for Reuse 367

4.1 Query Formulation

Let’s go back to our introductory example: A developer has to extend an al-
ready existing CMS solution by time recording mechanism which allow users
to tag their working time in the CMS system. First the developer might look
for existing components realizing the required functionality. Usually he doesn’t
know in advance, what properties the required code has. Probably he types
only some keywords like ”time”, “record” in the query field of the search engine
and lets the search engine find the “best” match. Of course we can not expect
from a search engine to read the thoughts of a developer and compute the best
matches; therefore some additional hints are necessary. The developer might
have already been working on this task for a while. He could have also prepared
the code for the new time tagging functionality by modification of some classes
or methods of the CMS solution. He could have at least localized that part of the
system by browsing through the packages of the system in an IDE, where the
time tagging component should be plugged in. These kinds of working context
information may imply some interesting information for a search engine. For ex-
ample there may exist several time tagging components, but not all suitable for
a CMS context. Classic information retrieval talks about the notion of context,
when it comes to contextual information, which can help to disambiguate syn-
onymous queries. However, when only considering implicit context information,
at least web-based search systems are limited to data that is transmitted with
the request, such as the browser language or the IP address. Source code search
however, could possibly benefit even more from contextual information, at least
when triggered from within an IDE. In general all kind of context information
may be incorporated in the search, like task context (which tasks is the developer
currently working on?) or even the role of the user (for example a tester may
rather search for examples how a piece of code is used, than for the functionality
itself. Techniques to find out developer’s working context are already addressed
by tools like mylyn [14] or Strathcona [11]. The Strathcona tool demonstrates,
how this contextualized information from the code editor can be used to restrict
the result set. However, Strathcona is limited to find related artifacts for a given
context, and does not allow for free-form queries from the user.

Additionally there are also some more aspects of the query, which influence
the accuracy of the matches as also described in section 2.1: Does the developer
search for an algorithm, a component or for an example how a certain component
is used? They have different characteristics, which may be exploited by the search
engine as heuristics like: a component has usually a strong internal cohesion and
usually has a lot of references from other projects. A code example may be rather
a small piece of code in a method body and has references to a certain component.

4.2 Ranking

Statistical ranking methods like used by most source code search engines perform
rather badly. This may be due to the fact, that source code – in contrast to
normal text – usually shows a skewed distribution of index terms. This, statistical



368 H.-J. Happel, T. Schuster, and P. Szulman

measures do not well discriminate among results. The ComponentRank approach
[12] has shown to perform well tackling that issue.

While ComponentRank does well in highlighting highly-reused framework
code, it neglects less “popular” non-framework code, which might be a better
fit. Above we described the need to extend the code search by using heuristics to
differentiate between such cases. Of course heuristics do not guarantee perfect
results, however based on them an appropriate ranking is possible.

Also a high reuse factor (and thus a high CodeRank) nor the heuristics above
do necessarily imply a high software quality. Developers do not aim to find a solu-
tion, but rather a good solution regarding software quality. Software quality itself
can be divided into internal and external quality. External quality characteristics
are those parts of a product that face its users, where internal quality character-
istics reflect the developerś perspective onto quality like maintainability of code.
However it is not proven, in the practice we can observe that good internal code
quality leads to good external quality. That is why we suggest focusing on the
developerś perspective and rank results based on their internal quality proper-
ties. Techniques to measure internal code quality of software systems are already
available [21], however they have to be adapted to the needs of the code search.

4.3 Result Presentation

Result presentation is one of the weakest points of current source code search en-
gines. First, code seems to be placed redundantly on the web, such that search
engines return a lot of duplicate results. Using code duplicate detection tech-
niques [2,20,6] it is possible to eliminate exact duplicates and group similar code
fragments. Furthermore results often show semantic differences (e.g. a keyword
matching in a method body vs. in a method signature) which are not self-evident
for the user.

As said many approaches focus on a list-style representation of code search
results. We claim that due to its inherent interconnection, source code requires
contextual information to interpret its suitability. Research in software mainte-
nance has shown that dependency diagrams can be very helpful to analyze code
structures [23]. If developers operate on such diagrams they usually gather a
fast overview of software without reading the code. Thus, we consider graph-
like representations, visualizing the context of a search result, as a worthwhile
alternative [16,15].

Once a piece of code was found, a developer should be able to interactively
navigate over the structure of the software starting from the piece of code found.
This way he would be able to navigate through methods calls, to parents or chil-
dren in the inheritance hierarchy, or browse over the package hierarchy around
the match. By ensuring navigation through the code starting from the matches,
the developer might judge easier the relevance of the matches.

4.4 Result Interpretation

In order to improve the efficiency of follow-up queries, relevance feedbacks pro-
vided by the developer can be used to evaluate the accuracy of previous matches



Leveraging Source Code Search for Reuse 369

of the code search. Besides tracking subsequent searches and result clicks, web-
based search engines can not derive much information about what the user does
with a search result. In source code search, when it is executed from within an
IDE, search systems can track far more user interaction, which can help to im-
prove the system. As an example, a search plugin could monitor if result code was
directly adapted by the user. In this case, a much stronger (implicit) relevance
rating can be derived compared to when a result is just “clicked”.

5 Conclusion

In this paper, we have described the phenomenon of source code search engines
in the context of software engineering. We therefore identified software reuse,
maintenance, the retrieval of insight information and understanding as main use
cases for the usage of these tools. In our opinion source code search engines can
play a major role to discover not only directly reusable lines of source code, but
also larger components and artifacts from related projects.

With the analysis of the current state-of-the art of source code search engines
it became obvious that some of these tools offer interesting features, while all of
them mainly follow very similar concepts. In this case that means that the tools
are based on classic information retrieval techniques, which are not perfectly
suitable when dealing with source code.

Among those shortcomings the lack of possibilities to leverage the formal,
structured nature of source code artifacts and the list-based paradigm of result
representation are the most severe ones. As one of the most critical items we fig-
ured out that all source code search approaches so far do not offer advanced inter-
action mechanisms on the search results and moreover do not implement quality
ranking algorithms. Thus, we suggest a number of concrete approaches to lever-
age source code search in the context of software engineering. Mainly we base our
ideas on the combination of source code search process and well-known technolo-
gies from software engineering research. Currently we are working on the inte-
gration and evaluation of those approaches in our own source code search engine.

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston (1999)

2. Baker, B.S.: A Program for Identifying Duplicated Code. Computing Science and
Statistics 24, 49–57 (1992)

3. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In:
FOSE 2007: 2007 Future of Software Engineering, pp. 285–303. IEEE Computer
Society, Los Alamitos (2007)

4. David, J., Happel, H.-J., Kleb, J., Maalej, W., Schmidt, R., Volz, R.: D6: Report
describing state-of-the art in search mechanism and context similarity. Project
deliverable. ist-project team 35111, 03 (2007)



370 H.-J. Happel, T. Schuster, and P. Szulman

5. Devanbu, P.T., Brachman, R.J., Selfridge, P.G.: Lassie: A knowledge-based soft-
ware information system. Commun. ACM 34(5), 34–49 (1991)

6. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detect-
ing duplicated code. icsm, 00:109 (1999)

7. Frakes, W.B., Kang, K.: Software reuse research: Status and future. IEEE Trans.
Software Eng. 31(7), 529–536 (2005)

8. Cernosek, E.N.G.: The value of modeling. developerworks (2004)
9. Henninger, S.: Case-based knowledge management tools for software development.

Autom. Softw. Eng. 4, 319–340 (1997)
10. Hermann, B., Muller, C., Schafer, T., Mezini, M.: Searchbrowser: An efficient index-

based search feature for the eclipse ide. In: Eclipse Technology eXchange workshop
(eTX) at ECOOP 2006 (2006)

11. Holmes, R., Walker, R.J., Murphy, G.C.: Approximate structural context matching:
An approach to recommend relevant examples. IEEE Transactions on Software
Engineering 32(12), 952–970 (2006)

12. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto,
S.: Component rank: relative significance rank for software component search. In:
ICSE 2003. Proceedings of the 25th International Conference on Software Engi-
neering, pp. 14–24. IEEE Computer Society, Washington (2003)

13. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography.
SIGIR Forum 37(2), 18–28 (2003)

14. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: SIGSOFT 2006/FSE-14: Proceedings of the 14th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, pp. 1–11. ACM, New
York (2006)

15. Lewerentz, C., Noack, A.: CrocoCosmos - 3D Visualization of large object-oriented
programs, pp. 279–297

16. Lewerentz, C., Simon, F.: Metrics-based 3d visualization of large object-oriented
programs. In: VISSOFT 2002. Proceedings of the 1st International Workshop on
Visualizing Software for Understanding and Analysis, p. 70. IEEE Computer So-
ciety, Washington (2002)

17. Matsushita, M.: Ranking significance of software components based on use rela-
tions. IEEE Trans. Softw. Eng. 31(3), 213–225 (2005); Inoue, M.-K., Yokomori,
M.-R., Yamamoto, M.-T., Kusumoto, M.-S.

18. Mili, A., Mili, R., Mittermeir, R.T.: A survey of software reuse libraries. Ann.
Softw. Eng. 5, 349–414 (1998)

19. Murphy, G.C., Kersten, M., Findlater, L.: How are java software developers using
the eclipse ide? IEEE Softw. 23(4), 76–83 (2006)

20. Rieger, M., Ducasse, S.: Visual detection of duplicated code. In: Ducasse, S., Weis-
brod, J. (eds.) Proceedings ECOOP Workshop on Experiences in Object-Oriented
Re-Engineering, number 6/7/98. Forschungszentrum Informatik Karlsruhe (1998)

21. Simon, F., Mohaupt, T., Seng, O. (eds.): Code Quality Management. Dpunkt Ver-
lag (2005)

22. Singer, J., Lethbridge, T., Vinson, N., Anquetil, N.: An examination of software
engineering work practices. In: CASCON 1997. Proceedings of the 1997 conference
of the Centre for Advanced Studies on Collaborative research, p. 21. IBM Press
(1997)



Leveraging Source Code Search for Reuse 371

23. Stasko, J.T., Brown, M.H., Price, B.A. (eds.): Software Visualization. MIT Press,
Cambridge (1997)

24. Trifu, M., Szulman, P.: Language independent abstract metamodel for quality anal-
ysis and improvement of oo systems. In: Proceedings of the 7th German Workshop
on Software-Reengineering (WSR 2005), Bad Honnef, Germany (2005)

25. Welty, C.A.: Software engineering. In: Baader, F., Calvanese, D., McGuinness,
D.L., Nardi, D., Patel-Schneider, P.F. (eds.) Description Logic Handbook, pp. 373–
387. Cambridge University Press, Cambridge (2003)



An Experimental Evaluation of Documentation

Methods and Reusability

Martin Blom, Eivind J. Nordby, and Anna Brunstrom

Computer Science, Karlstad University, Sweden
{Eivind.Nordby,Martin.Blom,Anna.Brunstrom}@kau.se

Abstract. This paper presents an experimental evaluation carried out
in an academic environment. The goal of the experiment was to com-
pare how different methods of documenting semantic information affect
software reuse. More specifically, the goal was to measure if there were
any differences between the methods with regard to the time needed to
implement changes to existing software. Four methods of documentation
were used; executable contracts, non-executable contracts, Javadoc-style
documentation and sequence diagrams. The results indicate that exe-
cutable contracts demanded more time than the other three methods
and that sequence diagrams and Javadoc demanded the least time.

1 Introduction

Code is an indispensable deliverable of all software based products and all over
the world code is reused, modified and maintained. One area where quality and
maintainability are addressed is in the handling of semantic aspects, by which
we mean semantic information on the class and method levels. Promising and
often-used methods in this area include executable contracts [1], non-executable
contracts [2], Javadoc [3] and sequence diagrams as in UML [4]. Neither of these
methods is new and much interesting research on the theoretical side has been
done, see for instance [5] for contracts or [6] for UML. What seems to be lacking,
though, is empirical studies to verify what benefits can be obtained by using the
methods. The intention of the experiment presented in this paper is to provide
one step in the process of empirically verifying the effects of using a particular
documentation method for improving software quality.

2 Experimental Setup

The experiment compared the four documentation methods mentioned above.
It used 15 students as test subjects who implemented change requests to four
programs written in C++. The experiment was performed over a period of four
consecutive days where each day contained one three-hour work session in which
the test subjects worked on one assignment. After the four days, all students
had solved all assignments and worked with all methods.

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 372–375, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



An Experimental Evaluation of Documentation Methods and Reusability 373

2.1 Documentation Methods

The aim of the experiment was to compare different documentation methods
that focus on semantic aspects in the software. Since neither of the methods
selected for evaluation give any structural or syntactic help, this was supplied to
the test subjects independent of the documentation method as class diagrams
and comments in the code. It is very important that the methods being compared
actually are comparable, i.e. that they have the same area of application. In our
experiment, the area of application is semantic documentation, and all methods
must therefore focus on that area. Executable contracts are either written as
executable commands in the same language as the actual program code or in a
meta-language and later compiled into the code [7,1]. A contract is written for
every method comprised of a precondition expressing what should hold before
calling the method and a postcondition expressing the effects of the method.
Non-executable contracts are similar to executable contracts, but are written as
comments that can be program code, plain English or combinations of both [2].
Since non-executable contracts have a less formal structure, they are less exact
but more easily read and can also express conditions that are not executable.
Javadoc is a technique using special comments and is separately compiled to
generate the documentation. It is used extensively by Java [3] developers and
is an easy way of producing documentation. Since the application language in
the experiment was C++, some of the features of Javadoc had to be emulated.
Sequence diagrams are used in UML [4] as a way of documenting interactions
between software parts. They contain information on methods and their invoca-
tions as well as conditions and call sequences.

2.2 Assignments

In the experiment, we needed four assignments that could be combined with
the documentation methods such that the subjects never had to solve the same
assignment twice. These assignments had to be solvable by the test subjects
within the given time interval, but in order for the documentation methods to
have any effect on the time needed for implementing the changes, the assign-
ments still needed to be non-trivial. One assignment, Coffee Machine, was found
in an article by Alistair Cockburn [8] and the other three assignments were con-
structed by the authors. The Coffee Machine program (550 LOC) emulates a
coffee machine that accepts coins and produces coffee and other beverages. The
change request was to implement functionality to change the concentration of
the beverages. The ATM program (450 LOC) was a simple implementation of a
money dispenser where the user can insert a card, enter a pin code and withdraw
money. The change request was to add functionality to handle more than one
account. The Address Book program (700 LOC) was a simple implementation of
an address book containing people and addresses that could be edited in various
ways. The change request was to add handling of two or more address books.
The Booking System program (800 LOC) handles resources such as rooms, per-
sons and times and the change request was to check for double bookings and to
add extraction of available times and rooms.



374 M. Blom, E.J. Nordby, and A. Brunstrom

2.3 Experiment Design

The test subjects were computer science students in their third year with a decent
background in programming using C++. They had all been exposed to all four
documentation methods in previous courses, although not extensively. The main
metric was time for completion of the assignments since it is a good indication
on how easy or hard the different methods made implementing the changes. The
quality of the resulting software was controlled by test cases, as we wanted all
subjects to produce software of roughly the same quality. To avoid the problem
of diversity among test subjects, all test subjects were subjected to all methods
in random order according to a Graeco-Latin square design [9]. Since no test sub-
ject can solve the same problem more than once without serious learning effects,
the number of assignments needed was equal to the number of methods used, i.e.
four in this case. This experimental setup is hence a factorial design with individ-
ual subjects and assignment as blocking variables and documentation method as
treatment. The analysis for a factorial experiment such as this is an ANOVA-test
[9], a test that makes it possible to analyze the effects of both treatments, block-
ing variables and noise in an experiment with a limited number of data points.

3 Results and Conclusions

This section presents the results derived from the experiment. Not all subjects
managed to complete their assignments within the given time frame. These sub-
jects were removed from further analysis, leaving eight subjects who managed
to solve all their assignments within time. Table 1 contains the figures on not
completed assignments for each method. The table shows that 25% of all assign-
ments were not completed on time and that the non-completed assignments were
reasonably well distributed between the methods except sequence diagrams. The
rest of the analysis includes only the eight subjects who completed all assign-
ments on time. This reduction imposes a threat to the validity of the experiment.
Table 2 shows the average values of the time needed to complete the assign-
ments for the different documentation methods and their diversions from the
grand average. As can be seen in the table, the average for executable contracts
is 27 minutes more than the grand average. This indicates that the test subjects
demanded more time to reuse software where the semantic information was doc-
umented using executable contracts. This might be expected, since the syntax is

Table 1. Methods and number of not completed assignments

Not completed %

Total 15 25%

Executable contracts 5 33%

Non-executable contracts 4 27%

Javadoc 4 27%

Sequence diagrams 2 13%



An Experimental Evaluation of Documentation Methods and Reusability 375

Table 2. Completion time for methods and their diversions from grand average

Average Div. from GA Div. from GA (%)

Grand average (GA) 101.6 min − −
Executable contracts 128.5 min 27.0 min 26.6%

Non-executable contracts 98.8 min −2.7 min −2.7%

Javadoc 89.5 min −12.0 min −11.8%

Sequence diagrams 89.1 min −12.3 min −12.2%

more formalized and expressive than the other methods and thus might be more
difficult to read and understand. Javadoc and Sequence diagrams were seen as
the two methods of documentation that demanded the least time to read and
understand and had average values close to 12 minutes below the grand aver-
age. This might be explained by their informal nature. As for the last method,
non-executable contracts, the average is close to the grand average. Since there
were differences between methods, a more detailed analysis was conducted using
an ANOVA-test that showed treatment to be significant on the 10%-level, thus
indicating that the differences initially found between methods are statistically
significant, although on a rather low level. The statistical evaluation thus sup-
ports the initial findings that executable contracts demanded more time than
the other methods and that Javadoc and sequence diagrams demanded less time.

References

1. Meyer, B.: Object Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

2. Blom, M., Nordby, E.J., Brunstrom, A.: An experimental evaluation of programming
by contract. In: Proceedings of the Ninth Annual IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems, Lund, Sweden (2002)

3. Gosling, J., Joy, B., Steele, G.: Java Language Specification. Addison-Wesley, Read-
ing (1996)

4. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

5. Findler, R.B., Felleisen, M.: Contract soundness for object-oriented languages. In:
Proceedings of OOPSLA 2001, Tampa, Florida, USA, pp. 1–15 (2001)

6. Song, I.-Y.: Developing sequence diagrams in uml. In: Kunii, H.S., Jajodia, S.,
Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 368–382. Springer, Heidelberg
(2001)

7. Kramer, R.: iContract - the Java Design by Contract Tool. In: Proceedings of the
TOOLS 1998 Conference, Santa Barbara, USA (1998)

8. Cockburn, A.: Object-oriented analysis and design, part 2. C/C++ Users Journal
(1998)

9. Box, G., Hunter, W., Hunter, J.: Statistics for Experimenters. John Wiley and sons,
Chichester (1978)



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 376–389, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

An Empirical Comparison of Methods for Reengineering 
Procedural Software Systems to Object-Oriented Systems 

William B. Frakes, Gregory Kulczycki, and Natasha Moodliar 

Computer Science Department, Virginia Tech, Falls Church, VA, 22043, USA 
frakes@cs.vt.edu, gregwk@vt.edu, natasham@vt.edu  

Abstract. This study empirically compared two methods for reengineering a 
procedural system to an object-oriented system. Our hypothesis was that it is 
possible to support this process with a repeatable method. The first method was 
manual and was used as a baseline for evaluating the second method, which 
was repeatable and based on analysis of procedure coupling. The repeatable 
method was found to be effective for identifying objects. It produced code that 
was much smaller, more efficient, and passed more regression tests than the 
manual method. Analysis of object-oriented metrics indicated both simpler code 
and less variability among classes. Particularly striking was the order of magni-
tude difference between the average cohesion metric (LCOM) for the manual 
and repeatable methods.  

Keywords: Reengineering, coupling metrics. 

1   Introduction 

The main goal of our research is to define a method and tools to assist in the process 
of converting code in a procedural language, such a C, to an object-oriented language 
such as C++ or Java. Our hypothesis is that it is possible to support this process with a 
repeatable method. This study builds on a previous paper presented at ICSR9 [7]. 

The history of programming and software engineering demonstrates the continual 
evolution towards larger grained programming constructs and more human focused 
languages [8]. One aspect of this evolution is the development of more reusable sys-
tems based on object-oriented design and programming. One way of achieving this is 
by reengineering existing procedure-based systems to object-oriented systems. Com-
panies sometimes use the migration from C to C++, for example, as opportunities for 
better reuse [5][13][15].  

Many companies have large inventories of legacy code written in procedural lan-
guages.  When these companies migrate to new object-oriented architectures, they do 
not want to start from scratch. Therefore, a need exists for a methodology that can 
analyze existing procedural code and identify related functions and data that can be 
encapsulated into reusable objects in the application domain. Since the study by Pole 
[15] there have been many studies of the procedural to object-oriented reengineering 
process [1][6][12][13][14][19]. 



An Empirical Comparison of Methods for Reengineering Procedural Software Systems 377 

The current study compares the result of two previous studies, in which we reengi-
neered the ccount metrics tool, written in C, to object-oriented programs written in 
C++. In the first study, a professional programmer reengineered the procedural code 
using a manual method [18]. The programmer inspected the C code and designed the 
object-oriented code based on principles that he considered appropriate. In the second 
study [7], we used a repeatable method to analyze the procedural code and aid the 
programmer in determining how to create classes from groups of functions. The 
method used various coupling metrics to determine how strongly any two procedures 
were related, and therefore, whether they belonged in the same class in an object-
oriented design. The method used the premise that program elements that exhibit 
certain kinds of coupling can be grouped together to form classes. 

In this study, we present an empirical comparison of the C++ code produced by the 
manual method with the C++ code produced by the repeatable method. Section 2 of 
this paper briefly describes the manual and repeatable methods that we used in our 
comparison, and section 3 compares the code using several different metrics. In 
section 4 we make some concluding remarks. 

2   Methodology 

We have conducted two studies of reengineering procedural to object-oriented 
code [7][18]. The procedural system used in the studies was ccount, a metrics tool for 
the C language that calculates the number of commentary and non-commentary 
source lines in a C program, and their ratio. It was developed as a simple program-
ming quality tool and was used as an example program in [9].  

The original version of ccount was written in K&R C on AT&T Unix. An ANSI-C 
version of ccount was subsequently created and this is the version that was used in our 
studies. The ANSI version of ccount consists of 749 non-commentary lines of code in 
seven files containing seventeen functions, including the main function. The ccount 
metric tool was used because it is tractable for a small case study, but non-trivial, so 
the studies are relevant. 

 

Fig. 1. A call graph for the original procedural code 



378 W.B. Frakes, G. Kulczycki, and N. Moodliar 

In both studies, cflow was used to identify the flow of control (call structure) of 
ccount. The output from cflow is in text format, which we then converted to the call 
graph shown in Figure 1. 

2.1   Manual Reengineering Effort 

In the first study, ccount was reengineered to C++ using standard reusable compo-
nents and a singleton design pattern [11] to capture utility classes. There is more than 
one way to convert a software product from one language to another. A very simple 
approach would be to take the modules or functions in the existing language and wrap 
them in modules or functions from the other language. This ensures that the resulting 
product is in the target language while not changing the functionality and the results 
by much. This is not optimal since, even though the conversion is complete, the new 
product does not use all the benefits and features of the new language. This is espe-
cially true when the source language is C and the target language is C++. Since C++ 
is backwards compatible to C, a very simple conversion would be to change the ex-
tensions on the files to .cpp and change printf’s to cout’s and be done. But, the result-
ing product would still be C in C++ clothing. 

A second option would be to use a C to C++ reengineering effort such as that 
described in the Pole method [15], which we discuss in more detail in the next subsec-
tion. A third option is to start from first principles. This involves looking at the prob-
lem statement, identifying the objects that stand out in the problem, and designing and 
developing the product from the ground up. The process involves defining attributes 
and methods for the various objects and creating classes for these objects. This option 
produces better code with most utilization of the features of the destination language 
than the first option. Also, since this design is from the ground up, one can take ad-
vantage of various optimizations from the beginning and support quality and main-
tainability from the start. This approach, however, is poor reuse because it requires a 
from-scratch development effort. This approach takes much longer for the conversion. 

The first study used a combination of the second and third options. We started 
from first principles in identifying objects and, once the objects were identified, the 
existing functions were remapped into methods that were appropriate for those ob-
jects. By doing so, we eliminated some functions, added new ones, and replaced 
existing ones with those from the standard C++ libraries. Sometime we replaced the 
functions with simpler ones that took advantage of the progress made in software 
platforms, and the portability of code that comes with using ANSI standards. 

Since we decided to use the existing functionality and not rewrite from the ground 
up, we were left with some functions that did not belong to any of the objects we 
identified. Some of these needed to be global since they maintained state information 
within the function between calls. These functions were packaged into a utility class. 
We used the singleton design pattern [11] to achieve a single instance of the object. In 
addition, due to time constraints, we left the parsing algorithm used for the classifica-
tion of a line the same as it was in the C version. 

From the statement of the problem and first principles, we identified three distinct 
objects: 

• File – An object that needs to be analyzed, and one in which CSL (comment source 
lines), NCSL (non-comment source lines), and the ratio of CSL to NCSL must be 
determined. At least one file must be analyzed during any invocation. 



An Empirical Comparison of Methods for Reengineering Procedural Software Systems 379 

• Func – An object at the lowest granularity that needs to be analyzed and whose 
metric must be reported. Every function belongs to one file, and a file can contain 
one or more functions. Code external to a C function is treated as belonging to a 
function named external. 

• Line – An object that needs to be classified as either external or belonging to a 
function. It may be a comment, non-comment, neither, or both. Every line belongs 
to only one function and a function has one or more lines. 

 

Fig. 2. A UML class diagram of the code produced by the manual method 

These objects have certain attributes, and we find a very good match of C functions 
with methods of these objects, though with a few changes. In addition, there are other 
functions and modules such as error checking and reporting, and command-line parsing 
that are either external to these objects or are not confined to one object. Finally, the stur-
dier, more generic and more optimal list container from the C++ Standard Template Li-
brary can safely replace the C code for linked-list generation, maintenance, and deletion. 

Figure 2 gives a UML class diagram of the reengineered code. The diagram repre-
sents all of the classes in the resulting code, but it omits some of the methods due to 
space constraints. Since the reengineering in this study was done by a professional 
programmer, this serves as a baseline for the repeatable method. 

2.2   Repeatable Method 

In the second study [7] we extended the Pole method by defining coupling metrics 
and using them to identify potential reusable objects in the ccount metrics tool. This 
study forms the foundation of the proposed research. In this subsection, we will 
briefly describe the steps in the method along with the various metrics used. We then 
demonstrate how objects are identified by using one of the metrics—the direct invo-
cation metric—and following it through the object identification process for the 
ccount metrics tool. 



380 W.B. Frakes, G. Kulczycki, and N. Moodliar 

Table 1. Notations and definitions for the eight coupling metrics used in [Frakes 2006] 

Name Definition 
Direct Invocation Metric The number of times that one function is statically referenced 

in the body of another function. 
Recursive Invocation 
Metric 

The number of times one function f2 is statically referenced in 
another function f1 plus number of times f1 is statically refer-
enced in f2. 

Indirect Invocation Metric The number of times that a function f1 statically references a 
function f2 by way of a third function fmid. 

Shared Parameter Metric The number of formal parameters in two functions that have 
the same type and same name. 

Shared Variable Metric The number of variables shared between two functions. Two 
variables in different functions are considered shared if they 
can be traced back to a common source (declaration). 

Shared Variable Tokens 
Metric 

This metric counts the static occurrences of all variables in 
two functions that share a common source. 

Shared Type-Name Vari-
able Metric 

This metric considers functions to be related if they share 
variables with the same type and the same name. 

Shared Type-Name Vari-
able Tokens Metric 

This metric counts the static occurrences of all formal pa-
rameters, global variables, and local variables that are com-
mon between two functions. 

The method starts with the premise that program elements that exhibit certain kinds 
of coupling can be grouped together to form objects. The steps in the reengineering 
process are as follows: 

1. The domain expert creates a function stop list. A stop list contains functions identi-
fied by the domain expert as utility functions that do not perform tasks specific to 
the domain. 

2. A call graph is generated. A tool or manual scanning of the code base is used to gen-
erate a call graph (as in Figure 1) that shows the flow of control in the legacy code. 

3. Dependency and context lists are created. A dependency list identifies all the func-
tions invoked from a given function. A context list does the reverse—it identifies 
the functions that invoke or use a given function. 

4. Objects are identified. In this step the metrics are calculated and the potential ob-
jects are identified. This step turned out to be the most involved step in the process. 
For clarity, we break its description into three sub-steps. 
• Summary data is collected. The summary data contains information for each 

function that is not in the stop list, such as the types and names of parameters, 
variables, and functions used in the given function. 

• Metrics are calculated. Different coupling metrics describe different relation-
ships between functions, such as how many times one function invokes another 
or how many parameters are shared by the functions. In this study we used eight 
different coupling metrics (described in Table 1) and evaluated each one indi-
vidually for its effectiveness in identifying objects. 

• Candidate objects are identified. The software engineer determines a threshold 
for each metric. If the metric for a pair of functions is above the threshold, those 
functions are candidates to appear as methods in the same class.  



An Empirical Comparison of Methods for Reengineering Procedural Software Systems 381 

5. Domain expert chooses objects. The domain expert examines candidate objects and 
determines whether they are reasonable for the domain. Variables common to two 
or more functions are examined for their appropriateness as object attributes. Left-
over functions, including the functions in the stop list, can be converted into indi-
vidual objects or packaged as utility objects. 

Each metric used in this methodology describes a distinct relationship between any 
two functions in the legacy system. We call them coupling metrics because they are 
based on various forms of module coupling, such as those given in [9], and because 
they indicate the dependency and the amount of communication that takes place be-
tween functions. A brief description of each metric used is given in Table 1. 

The metrics can be divided into three broad categories based on the kind of coupling. 

1. Invocation metrics. These metrics are based on routine call coupling as described 
in [16]. They rank functions based on how often one function invokes another. 

2. Shared parameter metrics. This category currently contains only one metric—the 
shared parameter metric. It is based on data element coupling as described in [9], 
which exists when data is passed from one function to another through a disci-
plined interface such as a parameter list. 

3. Shared variable metrics. These metrics are based on data definition coupling as 
defined in [9]. Data definition coupling occurs when functions manipulate data of 
the same type. 

Our goal was to use these metrics to determine if any two functions in the legacy 
system belong together in the same class when we move to an object-oriented system. 
In [7], we looked at many metrics because we did not know which ones would be the 
most effective in identifying objects 

An interesting result of this research was that, for the ccount metrics tool, the two 
most successful metrics turned out to be the simplest—the direct invocation metric 
and the shared parameter metric. 

 

Fig. 3. Distribution of values for the direct invocation metric 



382 W.B. Frakes, G. Kulczycki, and N. Moodliar 

 

Fig. 4. Class diagram of objects selected using the repeatable method 

Figure 3 gives the distribution of values obtained for the direct invocation metric. 
There are 17 functions in the ccount metrics tool, which means there are 17 × 16 = 
272 function pairs to consider. Out of those, there were 250 function pairs where no 
invocation occurred, 16 function pairs where one invocation occurred, four where two 
invocations occurred, and one each where three invocations occurred and eight invo-
cations occurred. The decision of which threshold to use was empirical to ensure that 
functions did not cluster in one object. In the case of the direct invocation metric, the 
vast majority of function pairs had a metric value of zero, so a threshold value of one 
was chosen—a value of anything greater than one would have meant that too many 
functions would be in classes by themselves. 

Based on the above observations and using the candidate objects as references, we 
chose the classes shown in Figure 4 for coding the object-oriented version of ccount. 
The list data type is identified and encapsulated in its own class. The functions main, 
Error, and Report_Metrics were each placed in their own class. 

The study found that coupling metrics provide a good starting point for identifying 
objects, although the metrics used in the study had limitations. For example, they 
were not able to completely identify the list data type in ccount. Hence domain expert 
analysis is an important step in the process. It is necessary for finalizing the optimal 
objects from the candidate objects identified from the coupling metrics. 

Table 2. Process variables 

Step Time taken 
Create stop list 1 hour 
Create flow graph 1 hour 
Dependency list 2 hours 
Identify objects 48 hours 
Domain expert analysis 16 hours 
Coding 23 hours 
Total 93 hours 



An Empirical Comparison of Methods for Reengineering Procedural Software Systems 383 

As seen in Table 2, the largest amount of time spent in the process was in identifying 
objects. The total time taken for the process was 93 hours. Though we did not record the 
times it took to calculate each metric in the identify-objects step, we estimate that we 
did not spend more than six hours calculating the direct invocation metric and the 
shared parameter metric—the two metrics that seemed to give the best results.  

This case study presented a good first step in determining how to reengineer a leg-
acy procedural system into an object-oriented system. The methodology examined 
was found to be helpful in identifying objects. Though most of the calculations for the 
repeatable method were performed by hand, many of these can be automated. The 
calculations for the metrics can be automated, and some level of automation may be 
possible for the translation from the procedural to the object-oriented code. We intend 
to investigate these possibilities in future research.  

3   Comparison of Results: Metrics Summary 

In this section we compare the manual and repeatable method on several metrics. First 
we compared the two methods in terms of regression testing. As can be seen in 
Figure 5, the repeatable method passed more of the ANSI C version regression tests, 
11 tests passed, than did the manual method, which passed eight. One key difference 
between the two methods is in total code size (commentary code + source code). As 
summarized in Figure 6, the manual method produced 2,481 lines of code, an increase 
of 61% over the C version. The repeatable method, on the other hand, was virtually 
the same as the C version producing 1,547 lines of code. As can be seen in Figure 7, 
the execution speed follows a similar pattern, with a small increase in execution speed 
for the repeatable method, and a much larger one for the manual method. The differ-
ences in execution speed may be partially caused by the increase in code size. 

The increase in code size was also reflected in numbers of methods. The manual 
method produced 59 methods vs. 20 for the repeatable method. The manual method 
produced four custom classes and reused the List class from the C++ standard tem-
plate library. The repeatable method produced five custom classes. The average num-
ber of methods per class was therefore 14.75 for the manual method and four for the 
repeatable method.  

 

Fig. 5. Number of regression tests passed by the original procedural code, the OO code devel-
oped using the manual method, and the OO code developed using the repeatable method 



384 W.B. Frakes, G. Kulczycki, and N. Moodliar 

 

Fig. 6. Difference in code sizes of the original procedural code, the OO code developed using 
the manual method, and the OO code developed using the repeatable method 

 

Fig. 7. Difference in execution speed of the original procedural code, the OO code developed 
using the manual method, and the OO code developed using the repeatable method 

 

Fig. 8. Spider graph comparison of metrics related to numbers of methods in code generated 
using the manual and repeatable method 

Of the 59 methods in the manual method, 49 of them were public and 10 were pri-
vate. The programmer using the manual method included a large number of accessor 
methods in his code (27 in total), so this increase may in part be due to his design 
decision to make heavy use of accessor methods. Of the 20 methods produced in the 
repeatable method, 12 were public and 8 were private. This is much closer to the 16 
functions in the procedural code. The repeatable code had 5 accessor methods, while 



An Empirical Comparison of Methods for Reengineering Procedural Software Systems 385 

the procedural code had 2. The manual method also had an equal or greater number of 
I/O and read/write methods than the repeatable method. The manual method produced 
2 I/O methods and 23 read/write methods, while the repeatable method also produced 
2 I/O methods, but produced only 17 read/write methods. The original code contained 
3 I/O methods and 12 read/write methods. The number of I/O and read/write methods 
is suggested as a predictor of good reuse components in [17]. The spider graph in 
Figure 8 gives an overview of these method numbers. 

3.1   Evaluation Using Object-Oriented Metrics 

We evaluated the manual and repeatable versions of the code using object-oriented 
metrics found in [4]. The metrics were weighted methods per class (WMC), coupling 
between object classes (CBO), response for a class (RFC), and lack of cohesion in 
methods (LCOM). The other metrics associated with this set, depth of inheritance tree 
(DIT) and number of children (NOC), were not used since neither method produced 
code with inheritance. The object-oriented metrics are designed to work on a per class 
basis. We report them here for each class and also give the average over all classes in 
each system. Interpreting these metrics is not always straightforward, though extreme 
numbers indicate a possible need to redesign the class [4]. There is also some indica-
tion that higher numbers can lead to more problems [3]. 

The weighted-methods-per-class metric gives the number of methods in each class. 
Weighting certain methods higher than others can change this number. For example, 
one might decide to give a lower weight to accessor methods or private methods. We 
have given equal weight to all methods since we have already reported numbers of 
accessor and private methods. Table 3 gives the weighted methods per class, which in 
this case is the same as the number of methods per class. The methods per class in the 
code produced with the manual method are almost always higher than those in the 
code produced with the repeatable method. 

Table 3. Weighted methods per class (WMC) for the manual and repeatable methods  

Manual method Repeatable method 
Class WMC Class WMC 
Cfile 19 CCounter 6 
Cfunc 15 CError 1 
Cline 21 CList 6 
Util 5 CParams 6 
  CReport 1 

Mean 15 Mean 4 
Median 17 Median 6 
Range 16 Range 5 

For the coupling-between-object-classes metric, a class is considered coupled to an-
other class if it uses attributes or methods from the other class, or vice versa. Therefore, 
if class A is coupled to class B, then class B must be coupled to class A. Note that the 
coupling metrics used in the repeatable method were based on many different forms of 
coupling. In this study both the manual method and repeatable method produced code in 



386 W.B. Frakes, G. Kulczycki, and N. Moodliar 

which all the attributes were private, so coupling occurs if one class uses the methods of 
another. Table 4 gives the CBO metrics for each class produced under the different 
methods. The numbers for the repeatable method are slightly higher. 

Table 4. Coupling between object classes (CBO) for the manual and repeatable methods 

Manual method Repeatable method 
Class CBO Class CBO 
Cfile 3 CCounter 2 
Cfunc 1 CError 4 
Cline 2 CList 3 
Util 1 CParams 1 
  CReport 2 

Mean 1.75 Mean 2.4 
Median 1.5 Median 2 
Range 2 Range 3 

The response for a class is the number of methods in a class plus the number of 
methods it calls from other classes. For example, if class A has one method that in-
vokes two other methods, both from different classes, then the response for class A is 
three. All methods are counted only once. Table 5 gives the response for each class 
produced by the manual and repeatable methods. The RFC values for the manual 
method are decidedly higher than those for the repeatable method. The manual mean 
is more than triple that of the repeatable method, and the range is more than double. 

Table 5. Response for a class (RFC) for the manual and repeatable methods 

Manual method Repeatable method 
Class RFC Class RFC 
Cfile 28 CCounter 9 
Cfunc 17 CError 1 
Cline 23 CList 7 
Util 6 CParams 7 
  CReport 3 

Mean 18.5 Mean 5.4 
Median 20 Median 7 
Range 22 Range 8 

The lack-of-cohesion-in-methods metric tries to measure the cohesiveness of a 
class. The higher this number, the less cohesive a class is. The most cohesive classes 
have an LCOM value of zero. The LCOM value is based on the notion that in a cohe-
sive class, most methods will use most of the attributes of the class. If most methods 
do not use many attributes, the lack of cohesion is higher. The exact formula is 
LCOM = max(n ⋅ m – 2 (A1 + A2 + … + Am)) where n is the number of attributes in 
the class, m is the number of methods in the class, and Ai is the number of attributes 
used by method i. Table 6 give the LCOM values for each class produced by each of 
the methods. As shown in the table, most of the LCOM values for the classes in the 
manual method are significantly higher than the values for the classes in the repeat-
able method. The value for the Cline class is particularly extreme. 



An Empirical Comparison of Methods for Reengineering Procedural Software Systems 387 

Table 6. Lack of cohesion in methods (LCOM) for the manual and repeatable methods 

Manual method Repeatable method 
Class LOCM Class LOCM 
Cfile 40 CCounter 8 
Cfunc 17 CError 0 
Cline 138 CList 0 
Util 4 CParams 14 
  CReport 0 

Mean 49.75 Mean 4.4 
Median 28.5 Median 0 
Range 134 Range 14 

1

10

100
Avg WMC

Avg CBO

Avg RFC

Avg LOCM
Manual method

Repeatable method

 

Fig. 9. Spider graph summarizing the object-oriented metrics on a logarithmic scale 

Figure 9 summarizes the object-oriented metrics using a spider graph. The average 
metric values for the manual method are higher than those for the repeatable method 
for all metrics except the CBO metric. 

4   Conclusion 

This study examined two methods for reengineering procedural software systems to 
object-oriented systems. Our hypothesis was that it is possible to support this process 
 

Table 7. Summary of metric contained in this paper 

Metric ANSI C Manual Repeatable See 
Regression tests passed 12/17 8/17 11/17 Figure 5 
CSL + NCSL 1542 2481 1547 Figure 6 
Execution speed 0.0582 sec 0.175 sec 0.0816 sec Figure 7 
Public methods N/A 49 12 Figure 8 
Private methods N/A 10 8 Figure 8 
Accessor methods 2 27 5 Figure 8 
Read/Write methods 12 23 17 Figure 8 
Input/Output methods 3 2 2 Figure 8 
Avg. WMC N/A 15 4 Table 3 
Avg. CBO N/A 1.75 2.4 Table 4 
Avg. RFC N/A 18.5 5.4 Table 5 
Avg. LOCM N/A 49.75 4.4 Table 6 



388 W.B. Frakes, G. Kulczycki, and N. Moodliar 

with a repeatable method. We empirically evaluated our method to determine its utility, 
and found that the repeatable method produced more compact and efficient code, and 
passed more regression tests than did the manual method. Analysis of object-oriented 
metrics indicated both simpler code and less variability among classes. Particularly 
striking was the order of magnitude difference between the average cohesion metric 
(LCOM) for the manual and repeatable methods. Table 7 summarizes our findings. 

Our analysis raises an interesting issue regarding the use of the repeatable methods. 
In general, we expect more variability in the manual method, and we observed this. 
Programmers using the manual method are redesigning the code from scratch, so their 
different design philosophies will be more apparent than they would be if using the 
repeatable method. Since the goal of the repeatable method is to provide the pro-
grammer with a suggested set of methods for each class, different programmers are 
more likely to produce similar code. 

References 

1. Achee, B., Carver, D.: Creating Object-Oriented Designs from Legacy Fortran Code. 
Journal of System Software 39, 170–194 (1997) 

2. Chen, Y.F., Nishimoto, M.Y., Ramamoorthy, C.V.: The C Information Abstraction Sys-
tem. IEEE Transactions on Software Engineering 16(3), 325–334 (1990) 

3. Chidamber, S.R., Darcy, D.P., Kemerer, C.F.: Managerial Use of Metrics for Object-
Oriented Software: An Exploratory Anaylysis. IEEE Transactions of Software Engineer-
ing 24(8) (August 1998) 

4. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object-Oriented Design. IEEE 
Transactions of Software Engineering 20, 476–493 (1994) 

5. Dunn, M., Knight, J.: Software Reuse in an Industrial Setting: A Case Study. In: Proceed-
ings 13th International Conference on Software Engineering, pp. 329–338 (1991) 

6. Fanta, R., Rajlich, V.: Reengineering Object-Oriented Code. In: Proceedings of the Inter-
national Conference on Software Maintenance (1998) 

7. Frakes, W.B., Kulczycki, G., Saxena, C.: Case Study of a Method for Reengineering Pro-
cedural Systems into OO Systems. In: Proceedings of the 9th International Conference on 
Software Resue, pp. 184–202 (2006) 

8. Frakes, W.B., Kang, K.: Software Reuse Research: Status and Future. IEEE Transactions 
on Software Engineering 31(7), 529–536 (2005) 

9. Frakes, W.B., Fox, C.J., Nejmeh, B.A.: Software Engineering in the UNIX/C Environ-
ment. Prentice Hall, Englewood Cliffs (1991) 

10. Frakes, W.B., Pole, T.P.: An Empirical Study of Representation Methods for Reusable 
Software Components. IEEE Transactions on Software Engineering 20(8), 617–630 
(1990) 

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable 
Object-Oriented Software. Addison-Wesley Professional, Reading (1994) 

12. Gui, J.: Software Reuse through Reengineering of Legacy Systems. In Information and 
Software Technology (2003) 

13. Lanza, M.: Object-Oriented Reverse Engineering, PhD Theses, University of Bern (2003) 
14. Newcomb, P., Kotik, G.: Reengineering Procedural into OO Systems. In: Proceedings, 

1995 Working Conference on Reverse Engineering (1995) 
15. Pole, T.P.: Pole Method for C to C++ Reengineering. Personal Communication (1991) 



An Empirical Comparison of Methods for Reengineering Procedural Software Systems 389 

16. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 6th edn. McGraw-Hill, 
New York (2005) 

17. Selby, R.W.: Quantitative Studies of Software Reuse. In: Software Reusability: Applica-
tions and Experience, vol. 2, pp. 213–233. ACM, New York (1989) 

18. Suryanarayanan, L., Frakes, W.B.: Re-engineering with Reuse: A Case Study. Virginia 
Tech. project report, Computer Science department (2003) 

19. Valasareddi, R., Carver, D.A.: Graph-Based Object Identification Process for Procedural 
Programs. In: 1998 Working Conference on Reverse Engineering (1998) 

20. Whitney, M., Kontogiannis, K., Johnson, J.H., Bernstein, M., Corrie, B., Merlo, E., 
McDaniel, J., De Mori, R., Muller, H., Mylopoulos, J., Stanley, M., Tilley, S., Wong, K.: 
Using Integrated Toolset for Program Understanding. In: Proceedings of the CAS Confer-
ence (CASCON 1995), pp. 262–274 (1995) 



H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 390–399, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Appendix: Workshop and Tutorial Abstracts 

Jianjun Zhao and Jeff Poulin 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Workshops 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 

 
 

First Workshop on Domain Specific Analysis and Design 
for Reuse (DSADR 2008) 

Wenyun Zhao1, Haiyan Zhao2, Xin Peng1, Wei Zhang2, 
Seok-Won Lee3, and Yijun Yu4 

1 Computer Science and Engineering Dept., Fudan University, Shanghai, 200433, China 
2 Insititute of Software, Peking University, Beijing, China 

3 The University of North Carolina at Charlotte, Charlotte, NC 28223-0001, USA 
4 Dept. of Computing, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK 

1   Motivation 

Software reuse is a promising and attractive concept for improving software pro-
ductivity, quality and time to market. However, a series of problems will often be 
encountered when considering reuse in a completely general context, including 
incompatible variability assumption, architecture mismatch, inability for more spe-
cific problem, etc. So a more promising way is to practice reuse based product de-
velopment within specific domain in a prescribed way, as in the area of domain 
engineering and software product line. 

Reuse oriented analysis and design is the premise of successful reuse based devel-
opment within specific domain. Problems to be solved include commonality and vari-
ability analysis, domain model, domain specific architecture design and description, 
design for variability, DSL (domain specific language), etc. 

2   Topics 

DSADR 2008 is the first time to be held in conjunction with ICSR, to bring together 
interested practitioners and researchers to exchange ideas and experiences, and 



 Appendix: Workshop and Tutorial Abstracts 391 

discuss current and emerging practices. The workshop will include a keynote speech 
and a series of presentations and discussions on relate issues. 

DSADR 2008 seeks contributions from researchers and practitioners interested in 
all aspects of analysis and design for domain specific software reuse. To this end, we 
solicit research papers related to, but not limited to, the following principal topics: 
domain analysis and modeling; domain specific software architecture; domain spe-
cific reuse repository; variability analysis and implementation; DSL (domain specific 
language); tools for domain specific reuse; experience report on domain specific re-
use; other topics on domain specific reuse. 

All submissions will be peer-reviewed by 3 PC members and accepted papers will 
be published by the Journal of Computer Science and Frontiers (http://www.ceaj.org/ 
wes) after the workshop. 

––––––––––––––––––––––––––––––––––––––– 
 
 

First Workshop on Knowledge Reuse (KREUSE2008) 
Summary 

Anabel Fraga1, Juan Llorens1, Rubén Prieto-Díaz2, and José Miguel Fuentes3 

1 Universidad Carlos III de Madrid, Departamento de Informática,   
Av. Universidad 30, Leganés, 

28911 Madrid, Spain 
{llorens,afraga}@inf.uc3m.es 

2 James Madison University, Computer Science Department,  
Virginia, USA  

prietodiaz@cisat.jmu.edu 
3 R&D Dept., The Reuse Company, Virginia, USA  
josemiguel.fuentes@reusecompany.com  

http://www.kr.inf.uc3m.es/KREUSE2008.htm 

The main purpose of Software Reuse is to improve software production by reusing 
previously created assets. Due to well known historical reasons, its industrial applica-
tion has been based on the systematic application of domain engineering. The most 
important weakness of this approach has been the huge investment needed to be ac-
complished by practitioners. Low or negative return of Investment (ROI) ratios be-
came one of the key problems for its wide-spreading. New approaches try to solve 
this problem by going back to the origins, reducing the need of previously modeled 
assets by improving indexing, classification and searching of assets on the fly. 
Knowledge Reuse is at the moment, one of the most advanced, active and modern 
research areas in the Reuse field. It deals with the application and integration of reuse 
methods, processes and tools within Knowledge Management processes.  It is impor-
tant for industry because it increases the productivity benefits. Currently, a significant 



392 J. Zhao and J. Poulin 

problem that companies have, is the variety of information available, and thus it is a 
challenge for them to transform information into knowledge, to represent any kind of 
knowledge within a common repository, and finally offer reuse  methods to users. In 
some measure, the Knowledge Reuse field needs to cope with the fact that knowledge 
may be anywhere, used by anyone and in any situation. Knowledge is very difficult to 
accumulate, be sought and be integrated for new needs. One of the basic problems 
with different types of knowledge is that reusers do not always get what they need 
from repositories, for reasons that have to do in part with how repositories are created, 
in part with not up-to-date retrieval techniques, and with almost not existing solutions 
for smart merging and integrating knowledge within other knowledge. This is a big 
part of the window to be covered by the Knowledge Reuse area.  

Topics of the workshop include: Formal representations of different kind of knowl-
edge, Ontology-based representations and their application to Reuse, Universal 
Knowledge Representation, Knowledge Modeling, Innovative Techniques for Knowl-
edge Representation, Knowledge extraction, indexing and mining, Knowledge Classi-
fication, Knowledge Retrieval, Knowledge transformation, Application of MDA/ 
MDD/MDE to Knowledge Reuse, Knowledge Visualization, Knowledge Traceability, 
Knowledge Reuse Metrics. 

––––––––––––––––––––––––––––––––––––––– 
 
 

Model Reuse Strategies: Software Case Reuse 

Michał Śmiałek1 and Kizito Mukasa2 

1 Warsaw University of Technology, Poland 
2 Fraunhofer IESE, Germany 

Abstract. The MoRSe workshop is a response to the new reuse possibilities 
started with the advent of model-driven development. MoRSe tries to find ways 
to reuse whole “software cases” instead of just pieces of code or individual 
model fragments. 

Model-driven development (MDD) is an approach to software engineering that tries 
to overcome complexity of systems through building their models. More and more 
software developers use modelling languages like UML to formulate requirements 
and design software. Models associated with producing software are used in a typical 
path from business processes, through requirements, architectures and detailed design 
to code. This gives us new, model-related strategies for reusing past knowledge about 
software systems. The Model Reuse Strategies (MoRSe) series of workshops has been 
started to respond to these new possibilities. MoRSe has a major objective to find 
ways for comprehensive model reuse. This includes seeking for understandable yet 



 Appendix: Workshop and Tutorial Abstracts 393 

precise requirements models, methods to link requirements with design models and 
code, and retrieval languages that allow for reuse of models. With these methods we 
hope to find ways to reuse more than just pieces of code or individual model ele-
ments. We hope to be able to reuse whole “software cases” which combine require-
ments with design and code thus giving complete problem-solution artefacts. 

The MoRSe’08 concentrates on topics associated with organisation of comprehen-
sive model-based reuse frameworks including model repositories and tool support for 
such repositories. This includes presentation of approaches from requirements engi-
neering, metamodelling, model transformation and querying and inference techniques. 
Specifically, the workshop focuses on the topics: modelling languages (including 
requirements modelling) and model transformation languages suitable for reuse, tech-
niques for determining and marking similarity of models, model query languages, 
model reuse engines, software development methodologies based on model reuse and 
reuse as applied to user interfaces. 

The workshop results should be of interest to researchers working on reuse frame-
works, tool producers seeking for novel approaches to reuse and software development 
teams that want to find ways to reuse their past knowledge based on models. The work-
shop discussions bring us closer to organising comprehensive frameworks (including a 
language, a tool and a methodology) that support reuse of models starting from models 
of requirements and ending with models of code. The workshop proceedings, published 
by Fraunhofer IRB Verlag, were edited also by Markus Nick from empolis GmbH, 
Germany and Juergen Falb from Vienna University of Technology, Austria. 

––––––––––––––––––––––––––––––––––––––– 
 
 

International Workshop on Software Reuse and Safety 
(RESAFE 2008) 

Bill Frakes1 and John Favaro2 

1 Department of Computer Science, Virginia Tech, 
7054 Haycock Rd., Falls Church VA 22043 

frakes@cs.vt.edu 
2 Consulenza Informatica, Via Gamerra 17, 

56123 Pisa, Italy 
john@favaro.net 

In the software engineering community at large, reuse has come of age, and in 
its various manifestations - component-based development, generative languages, do-
main engineering and others - it is one of the most popular and important paradigms. 
But there is one domain in which software reuse is looked upon with suspicion: the 
domain of safety critical systems. This workshop (http://www.favaro.net/john/ 
RESAFE2008/) addresses the issues. 



394 J. Zhao and J. Poulin 

1   Safety Is Different 

In her book Safeware, Leveson observes that a common problem in much current work 
in the area is the tendency to consider safety together with other nonfunctional 
properties such as reliability, availability, and dependability, leading to the impression that 
improvement in any of the other areas will automatically lead to improvements in its 
safety-related characteristics.  Yet it is easily demonstrated that a less dependable system 
can be safer than another, more dependable one, for example. A strong case is made for 
considering safety on its own merits, separately from other RAM characteristics. 

2   A Roadmap for Research in Software Reuse and Safety 

The software reuse research community has largely ignored the major issues in safety, 
although the recent interest in "wrappers" and similar technologies holds promise for 
addressing some of the issues around reuse of COTS (including entire operating sys-
tems) in safety critical systems. One contribution of this workshop is the identification 
of areas in which researchers can work to advance the state of the art with respect to 
reuse and safety. A concrete output of the workshop is envisioned to be a roadmap 
and paper to publish in a suitable journal and on appropriate websites such as the 
IEEE Software Engineering website. 
 
 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Tutorials 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 

Variability Management for Product Lines with a 
Generative Technique: Reuse beyond Components by 

Exploiting Software Similarity Patterns 

Stan Jarzabek 

National University of Singapore 
stan@comp.nus.edu.sg 

Component-based and architecture-centric techniques are the basic means to achieve 
reuse via Software Product Line (SPL) approaches. Component platforms providing 
various mechanisms for component reuse gain popularity.  

Advanced platforms (e.g., .NET or JEE) also start incorporating unconventional 
generative mechanisms for injection of aspect code that affects (crosscuts) many 
components. Aspect code seamlessly extends functionality of base components with 
extra, context-specific functionality such as logging, synchronization or persistence.  



 Appendix: Workshop and Tutorial Abstracts 395 

In this tutorial, we show how much higher levels of reuse can be achieved by ap-
plying XVCL [1] (http://xvcl.comp.nus.edu.sg) that supports not only aspects, but 
also other powerful mechanisms for handling variability in software, such as change 
propagation and generic design. These generative mechanisms allow us to stream- 
line non-local customizations with system-wide impact, that spread over component 
configurations. They also help us unify multiple similar component versions with 
generic, adaptable meta-components. These strategies can replace labor-intensive 
manual customizations for reuse with semi-automated customizations, increasing 
productivity during derivation of custom systems from a reusable component base (a 
Product Line Architecture, PLA).  XVCL approach can reduce the complexity of a 
PLA, and simplifies its evolution by orders of magnitude as compared to conventional 
component-based PLAs. The approach works for common services such as aspects, as 
well as at application domain layers of user interfaces or business logic, which are 
particularly difficult to componentized for reuse. 

References 

1. Jarzabek, S.: Effective Software Maintenance and Evolution: Reuse-based Ap-
proach. Taylor & Francis, CRC Press (2007) 

2. Pettersson, U., Jarzabek, S.: Industrial Experience with Building a Web Portal 
Product Line using a Lightweight, Reactive Approach. In: ESEC-FSE 2005, Euro-
pean Software Engineering Conference and ACM SIGSOFT Symposium on the 
Foundations of Software Engineering, Lisbon, pp. 326–335. ACM Press, New 
York (2005) 

––––––––––––––––––––––––––––––––––––––– 
 
 

Managing Software Reuse: A Case-Based Tutorial 

Wayne Lim  

Lero, the Irish Software Engineering Research Centre, University of Limerick, Ireland 
malibaba@lero.ie 

Utilizing the case method, attendees will be provided an overview and analysis of 
effective methods in several key areas. Specifically, they will learn:  

• How to initiate a reuse program, reuse adoption and institutionalization models, the 
possible roles of a corporate reuse program, and how to select pilot projects.  

• How to investigate reuse, what the benefits and costs of software reuse are, how to 
conduct a cost/benefit analysis for reuse, and some economic results from applying 
the cost/benefit model in several organizations.  



396 J. Zhao and J. Poulin 

• How to plan for reuse, how to organize and staff the reuse program, how to fund a 
reuse program, why organizations should measure  

• How to implement the reuse plan: technology transfer and change management 
issues and choosing a conversion strategy.  

This tutorial is an interactive, case-based seminar on establishing a software reuse 
program for your organization. Prior to the seminar, attendees are asked to read a case 
of an organization attempting to implement reuse.   

 
1. INTRODUCTION  

1. Reuse Definitions  
2. Evolution of the Software Reuse Concept  

  2. INITIATING SOFTWARE REUSE  
1.   Role of a Corporate Reuse Program  

  3. INVESTIGATING SOFWARE REUSE  
1. Benefits and Costs of Reuse  
2. Inhibitors to Reuse  
3. Critical Success Factors  

  4. PLANNING FOR SOFTWARE REUSE  
1. Staffing  
2. Organizing  
3. Financing  
4. Measurement and Tracking  

  5. IMPLEMENTING SOFTWARE REUSE  
1. Technology Transfer  
2. Change Management  
3. Conversion Strategy 

––––––––––––––––––––––––––––––––––––––– 
 

 

Mapping Product Line Requirements to a Product Line 
Architecture 

Mike Mannion1 and Juha Savolainen2 

1 School of Engineering & Computing, Glasgow Caledonian University, Glasgow 
m.a.g.mannion@gcal.ac.uk 
2 Nokia Research Center, Helsinki 

Juha.Savolainen@nokia.com 

In the consumer product market space a commercial challenge is to offer personaliza-
tion of products and services for individual customers at a mass production price. Prod-
uct line development is a compromise between customer requirements, existing product 



 Appendix: Workshop and Tutorial Abstracts 397 

line architectural constraints and commercial needs. Managing variability is the key to a 
successful product line development. As a product line evolves selections of require-
ments for new products are often constrained by the design of the existing product line 
architecture and the cost of making these changes. This tutorial discusses techniques, 
experiences and open issues about managing the transitions back and forth between 
product line requirements and architectural components as products evolve. 

One approach to managing these problems is to establish a pool of reusable re-
quirements and to construct the requirements for a new product by making a selection 
from the pool. We present a set of rules that map the selection constraint values of 
requirements on to the selection constraint values of architectural assets. The impact 
of changes made to either set of selection constraint values can be seen and evaluated 
in the other set. We examine the challenges of these techniques, present results of 
using them for real-world applications, and describe some software tools that can be 
used to support them. 

References 

1. Mannion, M., Kaindl, H.: Using Parameters and Discriminants for Product Line 
Requirements. Systems Engineering 11(1) (Spring 2008) 

2. Savolainen, J., Oliver, I., Myllärniemi, V., Männistö, T.: Analyzing and Re-
structuring Product Line Dependencies. COMPSAC (1), 569–574 (2007) 

––––––––––––––––––––––––––––––––––––––– 
 

 

Metrics and Strategy for Reuse Planning and 
Management 

Bill Frakes1 and John Favaro2  

1 Department of Computer Science, Virginia Tech, 
7054 Haycock Rd., Falls Church VA 22043 

frakes@cs.vt.edu 
2 Consulenza Informatica, Via Gamerra 17, 

56123 Pisa, Italy 
john@favaro.net 

Key to planning and managing a systematic reuse program is the formulation and 
evaluation of a competitive strategy, and subsequent monitoring and measurement of 
progress against the goals elucidated by that strategy. This tutorial provides a succinct 
introduction to software reuse metrics, and principles of strategic planning and eco-
nomic evaluation of reuse-oriented investments. The two parts of the course provide a 
comprehensive overview of current practice and recent developments in reuse project 



398 J. Zhao and J. Poulin 

planning and management. Topics include an introduction to management of reuse 
projects, basic concepts and terminology in reuse measurement, principles of strategy, 
and fundamentals of economic evaluation of proposed investments in reuse. 

1   Metrics for Managing with Reuse 

Topics covered include Reuse motivations (Role of reuse in improving productivity 
and quality, Types of Reuse); Software Reuse Failure Modes Model; Cost Benefit 
Analysis (Cost/Productivity Models); Quality of Investment (Business Reuse Metrics, 
Relation of Reuse to Quality and Productivity); Maturity Assessment (SPC Reuse 
Capability Model); Amount of Reuse (Reuse Level, Reuse Metrics for Object-
Oriented Systems, Reuse Predictions for Lifecycle Objects); Reusability Assessment. 

2   Value-Based Software Reuse Investment 

Topics covered include Principles of Strategy (Economic value maximization as the 
governing objective for a reuse-oriented business strategy, strategy as a bundle of 
projects); Principles of Valuation (Present value concepts, pros and cons of traditional 
approaches to valuation); Recent approaches to valuation of software investments 
(Projects as bundles of options, option-driven software development). 

––––––––––––––––––––––––––––––––––––––– 
 

 

Designing Software Product Lines with UML 2.0: From 
Use Cases to Pattern-Based Software Architectures 

Hassan Gomaa  

Department of Computer Science, George Mason University, Fairfax, Virginia, USA 
hgomaa@gmu.edu 

This tutorial addresses how to develop object-oriented requirements, analysis, and de-
sign models of software product lines using the Unified Modeling Language (UML) 2.0 
notation. During requirements modeling, kernel, optional, and alternative use cases are 
developed to define the software functional requirements of the system. The feature 
model is then developed to capture product line requirements and how they relate to the 
use case model. During analysis, static models are developed for defining kernel, op-
tional, and variant classes and their relationships. Dynamic models are developed in 
which statecharts define the state dependent aspects of the product line and interaction 
models describe the dynamic interaction between the objects that participate in each 
kernel, optional, and alternative use case. The object-oriented software architecture for 



 Appendix: Workshop and Tutorial Abstracts 399 

the product line is then developed, in which the system is structured into component-
based subsystems. Structural architecture patterns and communication patterns are also 
used in designing component based distributed product lines. The tutorial is illustrated 
by means of several examples. 

This tutorial is divided into two self-contained parts: the first part addresses Re-
quirements and Analysis Modeling for Software Product Lines with UML 2.0, which 
covers how to develop requirements and analysis models for software product lines, 
including use case modeling, feature modeling, static modeling, dynamic interaction 
and state machine modeling. The second part addresses Design Modeling for Soft-
ware Product Lines with UML 2.0, which covers how to develop component-based 
product line software architectures, including software architectural patterns for soft-
ware product lines, design of distributed autonomous components, designing kernel, 
optional, and variant components, and designing component interfaces, including 
ports, connectors, provided and required interfaces. 

References 

1. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison Wesley Object-Oriented Technology Series (2005) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Author Index

Admodisastro, Novia 26
Aiello, Marco 257
Altintas, N. Ilker 166
Aris, Hazleen 278
Aschauer, Thomas 217
Atkinson, Colin 64

Beyer, Hans-Jörg 1
Blankers, Laurens 100
Blom, Martin 372
Boldyreff, Cornelia 282
Brenner, Daniel 64
Brunstrom, Anna 372
Burégio, Vanilson Arruda 88

Cacho, N. 294
Cao, Donggang 343
Capiluppi, Andrea 282
Cetin, Semih 166
Chaudron, Michel 100
Cirilo, Elder 130
Coelho, Roberta 130
Cossentino, M. 294
Crnković, Ivica 100

Dauenhauer, Gerd 217
de Almeida, Eduardo Santana 88, 200
de M. Fortes, Renata P. 200
de Lucena, Carlos J.P. 130
Du, Xutao 262
Dustdar, Schahram 233

Easterbrook, Steve 212
Edelman, Adam 347
Etxeberria, Leire 178
Exman, Iaakov 274

Falcarin, Paolo 221
Frakes, William B. 347, 376

Gaglio, S. 294
Garcia, A. 294
Gomaa, Hassan 182

Han, Yanbo 221
Happel, Hans-Jörg 360

Hassin, Yehuda 274
Hein, Dirk 1
Holmes, Reid 330
Huang, He Yuan 245
Hummel, Oliver 64

Jeong, Anmo 270
Jeong, Seungnam 270
Jia, Xiao-xia 112
Jin, Zhi 186

Kim, Dae-Kyoo 306
Kim, Myung 270
Knodel, Jens 1
Koss, Dagmar 52
Kotonya, Gerald 26
Kulczycki, Gregory 376
Kulesza, Uirá 130
Kuusela, Juha 116

Land, Rikard 100
Lee, Jaejoon 154
Li, Ge 76
Li, Juncao 39
Li, Yan 76, 343
Lillie, Charles 347
Lim, Yoonsun 270
Liu, Chao 112
Lu, Lunjin 306
Lucrédio, Daniel 200
Ludrédio, Daniel 88

Mahjourian, Reza 14
Mannion, Mike 116
Meira, Silvio Lemos 88, 200
Moodliar, Natasha 376
Morisio, Maurizio 221
Muthig, Dirk 1, 154

Naab, Matthias 1
Niu, Nan 212
Nordby, Eivind J. 372

Olimpiew, Erika Mir 182

Peng, Xin 142
Penzenstadler, Birgit 52



402 Author Index

Poulin, Jeff 390
Pree, Wolfgang 217

Sabatucci, L. 294
Sagardui, Goiuria 178
Salim, Siti Salwah 278
Savolainen, Juha 116
Schitter, Clemens 1
Schuster, Thomas 360
Seiter, Linda 318
Shen, Liwei 142
Sillitti, Alberto 266
Song, Xiaoyu 39
Stoll, Dietmar 64
Succi, Giancarlo 266
Sun, Chang-ai 257
Sun, Jiasu 76
Sun, Xiuli 39
Szulman, Peter 360

Tan, Hua Fang 245
Tran, Huy 233

Vehkomäki, Tuomo 116
von Staa, Arndt 130

Walker, Robert J. 330
Wang, Chun 112
Wang, Jianwu 221
Wu, Ji 112

Xie, Fei 39
Xie, Bing 76
Xing, Chunxiao 262

Yan, Hua 186
Yu, Jian 221

Zdun, Uwe 233
Zhang, Liangjie 76
Zhang, Lu 343
Zhang, Wei 186
Zhao, Haiyan 186
Zhao, Jianjun 390
Zhao, Wei 245
Zhao, Wenyun 142
Zhou, Lizhu 262
Zhou, Minghui 343
Zhu, Jun 245
Zohar, Guy 274


	Title Page
	Preface
	Organization
	Table of Contents
	Introducing Architecture-Centric Reuse into a Small Development Organization
	Introduction
	Architecture-Centric Development
	Architecting at Wikon
	Iterative Development of the XENON8 Platform

	Discussion – Platform Comparison XENON7 vs. XENON8
	Conclusions and Outlook
	References

	An Architectural Style for Data-Driven Systems
	Introduction
	Related Work
	The Architectural Style
	Overview
	Data Layer
	View Layer
	Support Components

	Case Studies
	Squash
	BibIS
	Ringtone Vending Website

	Conclusions
	References

	Architectural Analysis Approaches: A Component-Based System Development Perspective
	Introduction
	Design Challenges in CBD
	Necessary Requirements for Architectural Analysis

	Architectural Analysis Approaches
	ATAM
	i* Approach
	ARGUS-I
	Odyssey-Adapt
	Engineering Framework

	Methods Summary
	Conclusions
	References

	Component-Based Abstraction and Refinement
	Introduction
	Background
	$\omegaω$-Automaton Semantics
	Assume-Guarantee Compositional Reasoning
	Verified Properties as Component Abstractions
	Automatic Component-Based Abstraction
	Mechanized Abstraction Refinement

	Application in Hardware/Software Co-verification
	Related Work
	Conclusions and Future Work
	References

	High Confidence Subsystem Modelling for Reuse
	Motivation
	Foundations
	Artefact Model
	General System Artefact Model
	Subsystem Borders

	Reuse of a Subsystem
	Validation of Conformity

	Verification of Compatibility with (U)CML
	Conclusions and Future Work
	References

	A Trustable Brokerage Solution for Component and Service Markets
	Introduction
	Black Box Brokerage
	BBB Testing with Test Sheets
	Test Sheets
	Blind Testing

	Integration with Test-Driven Reuse
	Testing Infrastructure
	Conclusion
	References

	Recommending Typical Usage Examples for Component Retrieval in Reuse Repositories
	Introduction
	Our Approach
	Code Retriever
	Code Analyzer
	Ranking Strategy

	Experimental Study
	Experimental Organization
	Experimental Results

	Related Work
	Discussion and Future Work
	Issues about Code Clustering
	The Inter-component Example
	Example Filtering Mechanism

	Conclusion
	References

	A Reuse Repository System: From Specification to Deployment
	Introduction
	Background
	Repository Specification
	Existing Solutions vs. Requirements

	Repository Design
	Infrastructure
	Production Module
	Management Module
	Consumption Module

	Implementation and Deployment Experience
	Outline Implementation
	Design Decisions

	Concluding Remarks and Future Works
	References

	COTS Selection Best Practices in Literature and in Industry
	Introduction
	Related Work and Scope Limitation

	Research Method
	Brief Survey of Component Selection Methods
	Meta-model of Existing Component Selection Methods
	How to Design a Customized Component Selection Method
	Structure of the Activities
	System Requirements
	Evaluation Criteria
	Evaluation Attribute, Data Collection, and Confidence
	Comparison Method, Comparison, and Decision
	Components and Candidates

	Summary and Conclusion
	References

	Mining Open Source Component Behavior for Reuse Evaluation
	Introduction
	Usage and Dependency Model
	UDM Mining and Measurement
	Case Study
	Conclusions
	References

	Combining Different Product Line Models to Balance Needs of Product Differentiation and Reuse
	Introduction
	Problems in Complex Industrial Product Lines
	Tyranny of the Reuse Organization
	Local Product Optimization
	Too Narrow View for Product Line Portfolio Management
	Problems in Applying a Single Product Line Development Method

	An Approach for Organizing Product Line Development
	Industrial Evidence and Related Work
	Conclusions
	References

	Integrating Component and Product Lines Technologies
	Introduction
	GenArch – A Model-Based Derivation Tool
	Annotating Java Code with Annotations
	Generating and Refining the Approach Models
	Product Derivation Process in GenArch

	Extending GenArch with Component-Based Technologies
	Spring Framework
	OSGi Technology

	Discussions and Lessons Learned
	Conclusions and Future Work
	References

	Feature Implementation Modeling Based Product Derivation in Software Product Line
	Introduction
	Problem of Product Derivation in Software Product Line
	Feature Implementation Model
	Feature Implementation Meta-model
	Variability in Feature Implementation Model
	Design Consideration in Feature Implementation Model
	Role Instantiation and Role Context
	Role-Level Customization

	Program-Level Customization and Composition
	Composition with Base Programs
	Composition between Variability-Related Programs
	Class-Dimension Coordination

	Tool Support and Case Study
	Related Works
	Conclusion and Discussion
	References

	Feature-Oriented Analysis and Specification of Dynamic Product Reconfiguration
	Introduction
	Related Work
	Approach

	Feature Analysis
	Dynamic Reconfiguration Specifications
	Context Analysis and Specification
	Specification of Reconfiguration Strategy
	Confirmation of Consistency Rules

	Conclusions
	References

	Managing Large Scale Reuse Across Multiple Software Product Lines
	Introduction
	The Approach: Software Factory Automation
	Domain Specific Kits as the Main Building Block
	Product Line Setup with SFA

	Case Study
	Results and Discussions
	Conclusions and Future Work
	References

	Quality Assessment in Software Product Lines
	Introduction
	Quality Aware Software Product Line Engineering
	Conclusions and Future Work
	References

	Managing Variability in Reusable Requirement Models for Software Product Lines
	Introduction
	Model-Based Requirements Models for Software Product Lines
	Reusable Feature Models
	Reusable Use Case Models
	Reusable Activity Models
	Reusable Test Models
	Conclusions
	References

	A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints and Customization
	Introduction
	Preliminary
	A Notation for Feature Models
	The Clonable Structure Related to a Clonable Feature

	Semantics for Constraints in Clone-Enabled Feature Models
	A Description Structure for the $\it {Generating}$ and the $\it {Adapting}$ Patterns
	The $\it {Generating}$ Pattern
	The $\it {Adapting}$ Pattern

	BDD-Based Verification of Feature Models
	Three Criteria for Feature Models’ Verification
	BDD-Based Checking Algorithm for the Three Criteria
	Constructing a BDD for a Feature Models
	Experiments

	Related Work
	Conclusions
	References

	Performing Domain Analysis for Model-Driven Software Reuse
	Introduction
	Context: Model-Driven Domain Engineering Approach
	Activities of the Domain Analysis Approach
	Domain Planning
	Domain Modeling
	Sub-domains Identification
	Domain Validation and Documentation
	Decision Upon Sub-domain Inclusion/Exclusion

	The Basic Cycle of Domain Analysis for MDD
	Related Work
	Conclusion
	References

	Exploiting COTS-Based RE Methods: An Experience Report
	Introduction
	Study Context and Design
	Results and Concluding Remarks
	References

	Towards Reusable Automation System Components
	Context and Motivation
	Domain Component Description Language (DCDL)
	Related Work
	References

	An Approach to Domain-Specific Reuse in Service-Oriented Environments
	Introduction
	Related Work
	Overview of the Approach
	Domain Engineering Process
	Domain Service Analysis
	Domain Service Matching

	Application Engineering Process
	Domain Service Customization
	Customized Service Matching

	Conclusions
	References

	View-Based Reverse Engineering Approach for Enhancing Model Interoperability and Reusability in Process-Driven SOAs
	Introduction
	The View-Based Modeling Framework
	Overview of the View-Based Modeling Framework
	View-Based Reverse Engineering Tool-Chain

	View-Based Reverse Engineering Approach
	The Reverse Engineering Tool-Chain
	General Approach for View Extraction

	Details of the View-Based Reverse Engineering Approach: Three Empirical Analyses
	Extracting Relevant Views
	Extracting Views at Different Abstraction Levels
	Enhancing the Adaptability of the Process Models

	Related Work
	Conclusion
	References

	A Lightweight Approach to Partially Reuse Existing Component-Based System in Service-Oriented Environment
	Introduction
	Related Work
	Methods and Tools for Legacy System Integration
	Methods and Tools for Legacy System Migration

	Approach and Architecture
	Overall Approach
	System Architecture

	Example Scenario
	Conclusion
	References

	Towards Variable Service Compositions Using VxBPEL
	Introduction
	Background
	Constructing Variable Compositions with VxBPEL
	Concluding Remarks
	References

	Abstract Reachability Graph for Verifying Web Service Interfaces
	Introduction
	Web Service Interface Control Flow Automata
	Abstract Reachability Graph
	Verification
	Conclusion
	References

	Reuse: From Components to Services
	Introduction
	The Process and the State of the Art
	Conclusions
	References

	Active Binding Technology: A Reuse-Enabling Component Model
	Introduction
	Active Binding Component
	Active Binding Component Assembly
	Conclusion
	References

	Collective Reuse of Software Components Speeds-Up Reliability
	Introduction
	Collective Reuse
	The Shared Factory Software Architecture
	Results and Validation: Reliability Speedup
	Discussion: Related and Future Work
	References

	Refinement of Component Model Standards and Conventions
	Introduction
	Refinement of Standards and Conventions
	Application of the Refined Standards
	Conclusion
	References

	Identifying and Improving Reusability Based on Coupling Patterns
	Introduction
	Definitions and Approach
	Case Studies – Evolutionary Analysis
	Source Folders as Reusable Units
	Identifying Reusable Folders
	Validation of the Predictors – Instability and Extensibility

	Related Work
	Conclusions, Further Work and Threats to Validity
	References

	Conquering Fine-Grained Blends of Design Patterns
	Introduction
	Defining Composable Patterns with POLaR
	Case Study: A Reflective Middleware
	Static and Dynamic Pattern Constituents

	Operators for Pattern Composition
	Static Pattern Blending
	Dynamic Pattern Blending

	Evaluation and Lessons Learned
	Related Work
	Conclusion and Future Work
	References

	Pattern-Based Transformation Rules for Developing Interaction Models of Access Control Systems
	Introduction
	Related Work
	Specifying Mandatory Access Control
	Transformation Rules
	A Case Study
	Conclusion
	References

	Balancing Quantification and Obliviousness in the Design of Aspect-Oriented Frameworks
	Introduction
	Aspect-Oriented Framework for Thrashing Detection
	Stability Monitoring with Singleton Aspects
	An Aspect-Oriented Framework for Stability Monitoring

	A Reusable Aspect-Oriented Component
	Related Work
	Conclusion
	References

	Lightweight, Semi-automated Enactment of Pragmatic-Reuse Plans
	Introduction
	Background: Pragmatic-Reuse Plans
	Procrustes: Semi-automating Enactment
	Extraction
	Integration
	Implementation

	Related Work
	Evaluation
	Task Descriptions
	Analysis of Minimum Required Effort
	Task Effectiveness Experiment
	Lessons Learned

	Discussion
	Does Semi-automating Enactment Matter?
	Do Lightweight Transformations Suffice?
	Representativeness of Participants and Tasks
	Net Cost of Pragmatic Reuse

	Conclusion
	References

	Constructing Flexible Application Servers with Off-the-Shelf Middleware Services Integration Framework
	Introduction
	Integration Framework of Middleware Services (CAC)
	Evaluation
	References

	SAM: Simple API for Object-Oriented Code Metrics
	Introduction
	SystemModel
	Comparing SAM to Current Methods
	Generative Methods
	Standalone Methods

	NumericalMethods
	Conclusion and Future Work
	References

	Leveraging Source Code Search for Reuse
	Introduction
	Use Cases
	Software Re-engineering
	Insight Information and Understanding

	Code Search Process
	Overview of Approaches
	Comparison of Approaches

	Open Issues and Potential Improvements
	Query Formulation
	Ranking
	Result Presentation
	Result Interpretation

	Conclusion
	References

	An Experimental Evaluation of Documentation Methods and Reusability
	Introduction
	Experimental Setup
	Documentation Methods
	Assignments
	Experiment Design

	Results and Conclusions
	References

	An Empirical Comparison of Methods for Reengineering Procedural Software Systems to Object-Oriented Systems
	Introduction
	Methodology
	Manual Reengineering Effort
	Repeatable Method

	Comparison of Results: Metrics Summary
	Evaluation Using Object-Oriented Metrics

	Conclusion
	References

	Appendix: Workshop and Tutorial Abstracts
	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




